计算机科学 ›› 2022, Vol. 49 ›› Issue (8): 178-183.doi: 10.11896/jsjkx.210600066

• 计算机图形学& 多媒体 • 上一篇    下一篇

高分辨率斜视聚束SAR回波仿真加速算法研究

郭拯危, 付泽文, 李宁, 白澜   

  1. 河南大学计算机与信息工程学院 河南 开封 475004
    河南大学河南省智能技术与应用工程技术研究中心 河南 开封 475004
    河南大学河南省大数据分析与处理重点实验室 河南 开封 475004
  • 收稿日期:2021-06-04 修回日期:2021-09-06 发布日期:2022-08-02
  • 通讯作者: 李宁(hedalining@henu.edu.cn)
  • 作者简介:(gzw@henu.edu.cn)
  • 基金资助:
    国家自然科学基金(61871175);河南省高等学校重点科研项目(19A420005,21A520004);河南省科技攻关计划项目(202102210175,212102210093,212102210101);自然资源部国土卫星遥感应用重点实验室经费资助项目(KLSMNR-202102)

Study on Acceleration Algorithm for Raw Data Simulation of High Resolution Squint Spotlight SAR

GUO Zheng-wei, FU Ze-wen, LI Ning, BAI Lan   

  1. College of Computer and Information Engineering,Henan University,Kaifeng,Henan 475004,China
    Henan Engineering Research Center of Intelligent Technology and Application,Henan University,Kaifeng,Henan 475004,China
    Key Laboratory of Analysis and Processing on Big Data of Henan Province,Henan University,Kaifeng,Henan 475004,China
  • Received:2021-06-04 Revised:2021-09-06 Published:2022-08-02
  • About author:GUO Zheng-wei,born in 1963,bachelor,professor,master supervisor.is a member of China Computer Federation.Her main research interests include SAR image processing techniques,and SAR image application of ecological environment.
    LI Ning,born in 1987,Ph.D,professor,Ph.D supervisor,is a member of China Computer Federation.His main research interests include multi-mode SAR imaging and SAR application.
  • Supported by:
    National Natural Science Foundation of China(61871175),College Key Research Project of Henan Province(19A420005,21A520004),Plan of Science and Technology of Henan Province(202102210175,212102210093 ,212102210101) and Key Laboratory of Land Satellite Remote Sensing Application,Ministry of Natural Resources of the People’s Republic of China(KLSMNR-202102).

摘要: 回波仿真是合成孔径雷达系统开发的前端工作,具有重要意义。针对高分辨率斜视聚束SAR,一般采用时域回波仿真的方法,但是其仿真效率过慢。为了高效实现高分辨率斜视聚束SAR的回波仿真,提出了一种有效的加速算法。结合斜视聚束SAR时域回波模型及其信号特性,对回波仿真过程中存在的距离徙动进行补偿,以减少冗余计算量并节省内存空间;采用数据自适应分块的方法,在图形处理器中分别计算分块后的子数据,利用GPU强大的计算能力进行加速;将子数据块进行传输,在内存中拼接。该算法提高了时域回波仿真的计算效率,解决了数据量大、GPU显存有限且显存与内存之间数据传输速度较慢的问题。点目标和面目标仿真的实验结果表明,该算法的加速比达到了219.8,验证了所提方法的有效性。

关键词: 高分辨率, 合成孔径雷达, 距离徙动, 时域回波仿真, 图像处理器

Abstract: Raw data simulation is the front-end work of synthetic aperture radar(SAR) system development,which is of great significance.For high resolution squint spotlight SAR,time-domain raw data simulation is usually used,but its simulation efficiency is very low.In order to realize the raw data simulation of high resolution squint spotlight SAR efficiently,an effective acceleration algorithm is proposed.To reduce the redundant computation and save memory,this algorithm combines the time-domain raw data simulation model and its signal characteristics to compensate the range cell migration(RCM) in the raw data simulation process of squint spotlight SAR.An adaptive data partitioning algorithm is adopted to compute the partitioned data in graphic processing unit(GPU), and the powerful computing capabilities of GPU is used to improve efficiency.Then the sub data blocks are transmitted and spliced in memory.The proposed algorithm improves the computational efficiency of time-domain raw data simulation,and solves the problems of huge volume of raw data,limited GPU memory and data transmission between video memory and memory.Experimental results of point targets and distributed targets show that the speedup ratio of this algorithm reaches 219.8,which verifies the effectiveness of the proposed method.

Key words: GPU, High resolution, Range cell migration, Synthetic aperture radar, Time-domain raw data simulation

中图分类号: 

  • TP702
[1]LI N,NIU S L.High-precision water segmentation from syn-thetic aperture radar images based on local super-resolution restoration technology[J].Journal of Radars,2020,9(1):174-184.
[2]ZHOU Y Y,CHENG J H,LIU T,et al.Review of Road Extraction for High-resolution SAR Images[J].Computer Science,2020,47(1):124-135.
[3]WANG B Q,QI X Y,ZHOU S B.An Improved Echo Simulation Method of GEO SAR[J].Radar Science and Technology,2019,17(2):198-207.
[4]ZENG L T,YANG C H,LI Q,et al.Vaildation of SyntheticAperture Radar(SAR) Image Algorithm Based on Simulation[J].Computer Science,2019,46(S1):287-290.
[5]FAN W,ZHANG M,LI J,et al.Modified Range-Doppler Algorithm for High Squint SAR Echo Processing[J].IEEE Geoence and Remote Sensing Letters(S1545-598X),2019,16(3):422-426.
[6]LI G,MA Y H,HOU J Q,et al.Sub-aperture Keystone Transform Based Echo Simulation Method for High-squint SAR with a Curve Trajectory[J].Journal of Electronics & Information Technology,2020,42(9):2261-2268.
[7]ZUO X Y,ZHANG Z,SU Y H,et al.Extraction Algorithm of NDVI Based on GPU Multi-stream Parallel Model[J].Computer Science, 2020,47(4):25-29.
[8]MENG D D,HU Y X,SHI T,et al.Airborne SAR Real-time Imaging Algorithm Design and Implementation with CUDA on NVIDIA GPU[J].Journal of Radars,2013,2(4):481-491.
[9]ZHOU F,LI J.Research on Multi-core DSP Based Parallel Access for SAR Data[J].Modern Electronics Technique,2018,41(15):26-30.
[10]CHEN Q,ZHU M B,ZOU X H,et al.Fast Realization of Bista-tic SAR Echo Simulation Based on GPU Acceleration[J].Computer Simulation,2017,34(4):1-4.
[11]WIJAYASIRI A,BANERJEE T,RANKA S,et al.Dynamic Data-Driven SAR Image Reconstruction Using Multiple GPUs[J].IEEE Journal of Selected Topics in Applied Earth Observations &Remote Sensing(S1939-1404),2018,11(11):4326-4338.
[12]LIU Y,XING M D,SUN G C,et al.Echo Model Analyses and Imaging Algorithm for High-Resolution SAR on High-Speed Platform[J].IEEE Transactions on Geoscience and Remote Sensing(S0196-2892),2012,50(3):933-950.
[13]CHENG D,WANG W H.Application of OpenMP in SAR Image Processing[J].Computer Science,2017,44(S1):161-163,187.
[14]HU C,ZHANG F,LI G J,et al.Computation Reduction Oriented Circular Scanning SAR Raw Data Simulation on Multi-GPUs[J].Journal of Radars,2016,5(4):434-443.
[15]LIU Y B,ZHOU Y C,ZHOU Y S,et al.Accelerating SARImage Registration Using Swarm-Intelligent GPU Parallelization[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2020,13(1):5694-5703.
[16]YANG W D,WANG H T,ZHANG Y F,et al.Survey of Hete-rogeneous Hybrid Parallel Computing[J].Computer Science,2020,47(5):5-16,3.
[17]ZAMBRE R,SAHASRABUDHE D,ZHOU H,et al.Logically Parallel Communication for Fast MPI+Threads Applications[J].IEEE Transactions on Parallel and Distributed Systems,2021,32(12):3038-3052.
[18]ZHANG Y R,CHEN L,AN X Z,et al.Study on PerformaceOptimization of Reduction Algorithm Targeting GPU Computing Platform[J].Computer Science,2019,46(2):306-314.
[19]LIU S,ZOU B,ZHANG L M,et al.A Multi-GPU Accelerated Parallel Domain Decomposition One-Step Leapfrog ADI-FDTD[J].IEEE Antennas and Wireless Propagation Letters,2020,19(5):816-820.
[20]KIM M,LIU L,CHOI W,et al.Multi-GPU Efficient Indexing for Maximizing Parallelism of High Dimensional Range Query Services[J/OL].IEEE Transactions on Services Computing,2021.https://ieeexplore.ieee.org/document/9430517.
[21]FARIBORZ M,XIAO X,FOTOUHI P,et al.Silicon Photonic Flex-LIONS for Reconfigurable Multi-GPU Systems[J].Journal of Lightwave Technology,2021,39(4):1212-1220.
[1] 毋琳, 白澜, 孙梦伟, 郭拯危.
基于特征优化的SAR图像水华识别方法
Algal Bloom Discrimination Method Using SAR Image Based on Feature Optimization Algorithm
计算机科学, 2021, 48(9): 194-199. https://doi.org/10.11896/jsjkx.200800142
[2] 崔雯昊, 蒋慕蓉, 杨磊, 傅鹏铭, 朱凌霄.
结合MCycleGAN与RFCNN实现太阳斑点图高分辨重建
Combining MCycleGAN and RFCNN to Realize High Resolution Reconstruction of Solar Speckle Image
计算机科学, 2021, 48(6A): 38-42. https://doi.org/10.11896/jsjkx.201000160
[3] 任帅, 王萌, 范傲雄, 高泽, 徐解, Shahzad KHURRAM, 张弢.
一种零高分辨率3D网格模型的信息隐藏算法
Zero-high-resolution Information Hiding Algorithm for 3D Mesh Model
计算机科学, 2020, 47(7): 328-334. https://doi.org/10.11896/jsjkx.190800021
[4] 陈立福,刘燕芝,张鹏,袁志辉,邢学敏.
基于Multi-Path RefineNet的多特征高分辨率SAR图像道路提取算法
Road Extraction Algorithm of Multi-feature High-resolution SAR Image Based on Multi-Path RefineNet
计算机科学, 2020, 47(3): 156-161. https://doi.org/10.11896/jsjkx.190100124
[5] 周岳勇,程江华,刘通,王洋,陈明辉.
高分辨率SAR图像道路提取综述
Review of Road Extraction for High-resolution SAR Images
计算机科学, 2020, 47(1): 124-135. https://doi.org/10.11896/jsjkx.190100033
[6] 彭金喜, 苏远歧, 薛笑荣.
基于深度学习和同生矩阵的SAR图像纹理特征检索方法
SAR Image Feature Retrieval Method Based on Deep Learning and Synchronic Matrix
计算机科学, 2019, 46(6A): 196-199.
[7] 曾乐天, 杨春晖, 李强, 陈平.
基于仿真的合成孔径雷达(SAR)成像算法验证
Validation of Synthetic Aperture Radar(SAR) Imaging Algorithm Based on Simulation
计算机科学, 2019, 46(6A): 287-290.
[8] 刘高峰,李明,王亚军,张鹏.
基于非负特征值分解的极化SAR子空间分解滤波
Subspace Decomposition Filtering Based on NNED for Polarimetric SAR
计算机科学, 2013, 40(5): 266-270.
[9] 王保平,孙超,郭俊杰.
基于稀疏表示和时频变换的ISAR成像算法
ISAR Imaging Algorithm Based on Sparse Representation and Time-frequency Transform
计算机科学, 2013, 40(1): 294-297.
[10] 张玉玺,王晓丹,姚旭,雷蕾.
一种融合多极化特征的雷达目标识别方法
Approach of Radar Target Recognition Based on Multiple Polarization Features Fusion
计算机科学, 2012, 39(9): 208-210.
[11] 冯晓毅,王西博,王 蕾,彭进业.
基于改进JSEG算法的高分辨率遥感图像分割方法
High Resolution Color Remote Sensing Image Segmentation Based on Improved JSEG Algorithm
计算机科学, 2012, 39(8): 284-287.
[12] .
基于多子波的SAR图像噪声的抑制

计算机科学, 2006, 33(8): 215-217.
[13] 李晖晖 郭雷 刘航.
基于互补信息特征的SAR与可见光图像融合研究

计算机科学, 2006, 33(4): 221-224.
[14] 张晨曦 姚鸿勋 姜峰.
基于多分辨率的多层分类器的手语识别方法

计算机科学, 2005, 32(4): 94-96.
[15] 孟庆武 孟新.
联合估计混叠度,运动参数和高分辨率图像的JEMAP算法

计算机科学, 2004, 31(6): 184-188.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!