计算机科学 ›› 2020, Vol. 47 ›› Issue (2): 106-111.doi: 10.11896/jsjkx.190100228

• 计算机图形学&多媒体 • 上一篇    下一篇

基于深度邻近连接网络的单幅图像去雨方法

傅雪阳,孙琦,黄悦,丁兴号   

  1. (厦门大学信息科学与技术学院 福建 厦门361005)
  • 收稿日期:2019-01-28 出版日期:2020-02-15 发布日期:2020-03-18
  • 通讯作者: 丁兴号(dxh@xmu.edu.cn)
  • 基金资助:
    国家自然科学基金(61571382,81671766,61571005,81671674,61671309,U1605252)

Single Image De-raining Method Based on Deep Adjacently Connected Networks

FU Xue-yang,SUN Qi,HUANG Yue,DING Xing-hao   

  1. (School of Information Science and Technology,Xiamen University,Xiamen,Fujian 361005,China)
  • Received:2019-01-28 Online:2020-02-15 Published:2020-03-18
  • About author:U Xue-yang,born in 1988,Ph.D,is member of China Computer Federation (CCF).His main research interests include image processing and machine learning;DING Xing-hao,born in 1976,Ph.D,professor,Ph.D supervisor,is member of China Computer Federation (CCF).His main research interests include computer vision,machine learning,big data analysis and processing,sparse representation theory and artificial intelligence.
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (61571382, 81671766, 61571005, 81671674, 61671309, U1605252).

摘要: 雨天环境下的雨线导致图像内容被遮挡,严重影响人眼的视觉效果和后续系统的处理性能。目前主流的深度学习方法为了提升处理性能,均以复杂的网络结构和较大的参数量为代价,导致相关方法难以服务于实际应用。为此,文中提出一种新的深度邻近连接网络结构。它通过关注深度网络中所学特征图之间的关系,采用融合操作将邻近特征图进行连接,以获得更加丰富和有效的特征表示。实验数据表明,所提方法在3个公开合成数据集及真实有雨图像上的主客观处理效果、模型参数量和运行时间等相关性能都有所提升。在合成数据集Rain100H上的平均结构相似性(SSIM)值达到0.84,在合成数据集Rain100L和Rain1200上的平均SSIM值分别达到0.96和0.91。在真实有雨图像上,所提方法在有效去除前景雨线的同时,能够保护更完整的背景图像信息,从而获得更好的主观视觉效果。相比于同时期的深度学习方法JORDER,文中方法在保证相近的处理效果的前提下,模型参数量和CPU运行时间分别降低了一个和两个数量级。实验数据充分说明,通过将网络中邻近特征图进行融合,能够获取更加有效的特征表示。因此,所提方法虽然仅使用较少的模型参数和简洁的神经网络结构,却依旧能够较好地实现图像去雨效果,解决了现有方法模型参数量较大和网络结构较为复杂的问题。同时,该网络结构设计方案也能够为基于深度学习的相关图像复原任务提供参考和借鉴。

关键词: 卷积神经网络, 深度学习, 特征融合, 图像去雨

Abstract: Rain streaks result in the occlusion of image content,which seriously affects the human visual effect and the processing performance of subsequent systems.Existing deep learning-based methods improve de-raining performance at the expense of complex network structure and parameter burden,which makes these methods difficult for serving practical applications.Therefore,a deep adjacently connected network structure was proposedin this paper.By focusing on the relationship between learned feature maps in depth networks,a fusion operation is designed to connect the adjacent features to obtain rich and more effective feature representation.Experiments on three public synthetic datasets and real-world rainy images show that the proposed method improves de-raining performance on both subjective and objective evaluations.The average structural similarity (SSIM) value on the synthetic dataset Rain100H is 0.84,and the average SSIM values on the synthetic dataset Rain100L and Rain1200 are 0.96 and 0.91.In real-world rainy images,the proposed method can effectively remove the foreground rain streaks while protecting background image information to obtain better visual quality.Compared with JORDER,the proposed method achieves comparable de-raining results,and can reduce the model parameters and CPU runtime by one and two orders of magnitude,respectively.Experimental data demonstrate that fusing adjacent features in the deep network can generate more effective representation.Therefore,although the proposed method contains relative few parameters and simple neural network structure,it can still achieve better ima-ge de-raining performance and solve the problems of parameter burden and complex network structure in existing methods.Mo-reover,the network structure design scheme in this paper can also provide reference values for relative image restoration tasks based on deep learning.

Key words: Convolutional neural networks, Deep learning, Feature fusion, Image de-raining

中图分类号: 

  • TP391.41
[1]KANG L W,LIN C W,FU Y H.Automatic Single-Image-Based Rain StreaksRemoval via Image Decomposition[J].IEEE Tran-sactions on Image Processing,2011,21(4):1742-1755.
[2]HUANG D A,KANG L W,WANG Y C F,et al.Self-Learning BasedImage Decomposition with Applications to Single Image Denoising[J].IEEE Transactionsons on Multimedia,2014,16(1):83-93.
[3]CHEN Y L,HSU C T.A Generalized Low-Rank Appearance Model for Spatio-Temporally Correlated Rain Streaks[C]∥Processings of the the 2013 IEEE International Conference on Computer Vision.Sydney,Washington:IEEE,2013:1968-1975.
[4]WANG Y L,LIU S C,CHEN C,et al.A Hierarchical Approach for Rainor Snow Removing in a Single Color Image[J].IEEE Transactions on Image Processing,2017,26(8):3936-3950.
[5]LUO Y,XU Y,JI H.Removing Rain from a Single Image via Discriminative Sparse Coding[C]∥2015 IEEE International Conference on Computer Vision.Chile:Santiago,2015:3397-3405.
[6]LI Y,TAN R T,GUO X J,et al.Rain Streak Removal Using Layer Priors[C]∥2016IEEE Conference on Computer Vision and Pattern Recognition(CPVR).Las Vegas,USA,2016:2736-2744.
[7]ZHU L,FU C,LISCHINSKI D,et al.Joint Bi-layer Optimization for Single-image Rain Streak Removal[C]∥The IEEE International Conference on Computer Vision.Venice,Italy,2017:2545-2553.
[8]CHANG Y,YAN L,ZHONG S.Transformed Low-Rank Model for Line Pattern NoiseRemoval[C]∥2017 IEEE International Conference on Computer Vision.Venice,Italy,2017:1735-1743.
[9]GU S H,MENG D Y,ZUO W M,et al.Joint Convolutional Analysis andSynthesis Sparse Representation for Single Image Layer Separation[C]∥2017 IEEE InternationalConference on Computer Vision.Venice,Italy,2017:1717-1725.
[10]KRIZHEVSKY A,SUTSKEVER I,HINTON G.ImageNet classification with deep convolutional neural networks[C]∥Proceedings of the 25th International Conference on Neural Information Processing Systems.Lake Tahoe,Nevada,2012:1097-1105.
[11]EIGEN D,KRISHNAN D,FERGUS R.Restoring an Image Taken through a Window Covered with Dirt or Rain[C]∥Proceedings of the 2013 IEEE International Conference on Computer Vision.Washington,USA,2013:633-640.
[12]FU X Y,HUANG J B,DING X H,et al.Clearing the skies:a deep network architecture for single-image rain removal[J]. IEEE Transactions on Image Processing,2017,26(6):2944-2956.
[13]FU X Y,HUANG J B,ZENG D L,et al.Removing rain from single images via a deep detail network[C]∥ IEEE Conference on Computer Vision and Pattern Recognition.Honolulu,USA,2017:3855-3863.
[14]YANG W H,TAN R T,FENG J S,et al.Deep Joint Rain Detection and Removal from a Single Image[C]∥2017 IEEE Conference on ComputerVision and Pattern Recognition.Honolulu,USA,2017:1685-1694.
[15]PAN J S,LIU S F,ZHANG J W,et al.Learning Dual Convolutional Neural Networksfor Low-Level Vision[C]∥IEEE Conference on Computer Vision and Pattern Recognition.Salt Lake City,USA,2018:1-10.
[16]ZHANG H,PATEL V M.Density-Aware Single Image De-raining using a Multi-stream Dense Network[C]∥IEEE Confe-rence on Computer Vision and Pattern Recognition.Salt Lake City,USA,2018:1-10.
[17]YU F,KOLTUN V,FUNKHOUSER T.Dilated residual net-works[C]∥IEEE Conference on Computer Vision and Pattern Recognition.Honolulu,USA,2017:636-644.
[18]HE K M,ZHANG X Y,REN S Q,et al.Deep residual learning for image recognition[C]∥IEEE Conference on Computer Vision and Pattern Recognition.Las Vegas,United States,2016:770-778.
[19]HUANG G,LIU Z,MAATEN L,et al.Densely connected convolutional networks[C]∥IEEE Conference on Computer Vision and Pattern Recognition.Honolulu,USA,2017:4700-4708.
[20]KINGMA D,BA J.Adam:A Method for Stochastic Optimization [C]∥International Conference on Learning Representations.San Diego,USA,2015:1-15.
[21]WANG Z,BOVIK A C,SHEIKH H R,et al.Image Quality Assessment:from Error Visibility to Structural Similarity[J].IEEE Transactions on Image Processing,2004,13(4):600-612.
[22]GONZALEZ R C,WOODS R E.Digital Image Processing[M].Upper Saddle River:Prentice Hall,2012.
[1] 饶志双, 贾真, 张凡, 李天瑞.
基于Key-Value关联记忆网络的知识图谱问答方法
Key-Value Relational Memory Networks for Question Answering over Knowledge Graph
计算机科学, 2022, 49(9): 202-207. https://doi.org/10.11896/jsjkx.220300277
[2] 汤凌韬, 王迪, 张鲁飞, 刘盛云.
基于安全多方计算和差分隐私的联邦学习方案
Federated Learning Scheme Based on Secure Multi-party Computation and Differential Privacy
计算机科学, 2022, 49(9): 297-305. https://doi.org/10.11896/jsjkx.210800108
[3] 周乐员, 张剑华, 袁甜甜, 陈胜勇.
多层注意力机制融合的序列到序列中国连续手语识别和翻译
Sequence-to-Sequence Chinese Continuous Sign Language Recognition and Translation with Multi- layer Attention Mechanism Fusion
计算机科学, 2022, 49(9): 155-161. https://doi.org/10.11896/jsjkx.210800026
[4] 徐涌鑫, 赵俊峰, 王亚沙, 谢冰, 杨恺.
时序知识图谱表示学习
Temporal Knowledge Graph Representation Learning
计算机科学, 2022, 49(9): 162-171. https://doi.org/10.11896/jsjkx.220500204
[5] 陈泳全, 姜瑛.
基于卷积神经网络的APP用户行为分析方法
Analysis Method of APP User Behavior Based on Convolutional Neural Network
计算机科学, 2022, 49(8): 78-85. https://doi.org/10.11896/jsjkx.210700121
[6] 朱承璋, 黄嘉儿, 肖亚龙, 王晗, 邹北骥.
基于注意力机制的医学影像深度哈希检索算法
Deep Hash Retrieval Algorithm for Medical Images Based on Attention Mechanism
计算机科学, 2022, 49(8): 113-119. https://doi.org/10.11896/jsjkx.210700153
[7] 孙奇, 吉根林, 张杰.
基于非局部注意力生成对抗网络的视频异常事件检测方法
Non-local Attention Based Generative Adversarial Network for Video Abnormal Event Detection
计算机科学, 2022, 49(8): 172-177. https://doi.org/10.11896/jsjkx.210600061
[8] 檀莹莹, 王俊丽, 张超波.
基于图卷积神经网络的文本分类方法研究综述
Review of Text Classification Methods Based on Graph Convolutional Network
计算机科学, 2022, 49(8): 205-216. https://doi.org/10.11896/jsjkx.210800064
[9] 李宗民, 张玉鹏, 刘玉杰, 李华.
基于可变形图卷积的点云表征学习
Deformable Graph Convolutional Networks Based Point Cloud Representation Learning
计算机科学, 2022, 49(8): 273-278. https://doi.org/10.11896/jsjkx.210900023
[10] 王剑, 彭雨琦, 赵宇斐, 杨健.
基于深度学习的社交网络舆情信息抽取方法综述
Survey of Social Network Public Opinion Information Extraction Based on Deep Learning
计算机科学, 2022, 49(8): 279-293. https://doi.org/10.11896/jsjkx.220300099
[11] 郝志荣, 陈龙, 黄嘉成.
面向文本分类的类别区分式通用对抗攻击方法
Class Discriminative Universal Adversarial Attack for Text Classification
计算机科学, 2022, 49(8): 323-329. https://doi.org/10.11896/jsjkx.220200077
[12] 姜梦函, 李邵梅, 郑洪浩, 张建朋.
基于改进位置编码的谣言检测模型
Rumor Detection Model Based on Improved Position Embedding
计算机科学, 2022, 49(8): 330-335. https://doi.org/10.11896/jsjkx.210600046
[13] 侯钰涛, 阿布都克力木·阿布力孜, 哈里旦木·阿布都克里木.
中文预训练模型研究进展
Advances in Chinese Pre-training Models
计算机科学, 2022, 49(7): 148-163. https://doi.org/10.11896/jsjkx.211200018
[14] 周慧, 施皓晨, 屠要峰, 黄圣君.
基于主动采样的深度鲁棒神经网络学习
Robust Deep Neural Network Learning Based on Active Sampling
计算机科学, 2022, 49(7): 164-169. https://doi.org/10.11896/jsjkx.210600044
[15] 金方焱, 王秀利.
融合RACNN和BiLSTM的金融领域事件隐式因果关系抽取
Implicit Causality Extraction of Financial Events Integrating RACNN and BiLSTM
计算机科学, 2022, 49(7): 179-186. https://doi.org/10.11896/jsjkx.210500190
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!