计算机科学 ›› 2021, Vol. 48 ›› Issue (4): 104-110.doi: 10.11896/jsjkx.200800027
刘志鑫, 张泽华, 张杰
LIU Zhi-xin, ZHANG Ze-hua, ZHANG Jie
摘要: 推荐系统是当前数据挖掘领域的研究热点,海量数据的涌现促使多源信息融合的推荐方法得到极大的关注。但是,现有的基于异质信息融合的推荐方法在进行特征表示时往往忽略了用户和项目之间的交互信息以及元路径之间的相互影响。因此,考虑到属性节点嵌入和结构元路径的不同视角,提出了一种多层次图注意力的网络推荐方法。该方法通过构建不同的元路径,将多源信息网络结构粒化为多个独立的粗粒度网络,然后基于图注意力机制结合局部节点属性嵌入,来分别学习用户和项目的潜在特征,最终给出融合后的细粒度网络推荐。在现实大规模数据集上进行横向和纵向评测,实验结果表明该方法能够有效地提升推荐性能。
中图分类号:
[1]SHI C,HU B,ZHAO W X,et al.Heterogeneous information network embedding for recommendation[J].IEEE Transactions on Knowledge and Data Engineering,2018,31(2):357-370. [2]ZHU J,ZHANG J,ZHANG C,et al.CHRS:Cold startrecommendation across multiple heterogeneous information networks[J].IEEE Access,2017,5:15283-15299. [3]WANG X,HOI S C H,ESTER M,et al.Learning personalized preference of strong and weak ties for social recommendation[C]//Proceedings of the 26th International Conference on World Wide Web.2017:1601-1610. [4]ZHANG J,LI T,JIANG Z,et al.A Novel Weighted Meta Graph Method for Classification in Heterogeneous Information Networks[J].Applied Sciences,2020,10(5):1603. [5]CHEN Y,WANG C.HINE:Heterogeneous information net-work embedding[C]//Proceedings of the International Conference on Database Systems for Advanced Applications.Springer,Cham,2017:180-195. [6]ZHAO H,YAO Q,LI J,et al.Meta-graph based recommendation fusion over heterogeneous informationnetworks[C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.2017:635-644. [7]SHI C,ZHANG Z,LUO P,et al.Semantic path based personalized recommendation on weighted heterogeneous information networks[C]//Proceedings of the 24th ACM International on Conference on Information and Knowledge Management.2015:453-462. [8]HU B,SHI C,ZHAO W X,et al.Leveraging meta-path basedcontext for top-n recommendation with a neural co-attention model[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.2018:1531-1540. [9]苗夺谦,王国胤,刘清,等.粒计算:过去,现在与展望[M].北京:科学出版社,2007. [10]ZADEHL A.Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic[J].Fuzzy Sets and Systems,1997,90(2):111-127. [11]HU Q H,YU D R,XIE Z X.Numerical attribute reductionbased on neighborhood granulation and rough approximation[J].Journal of Software,2008,19(3):640-649. [12]QIAN Y,LIANG X,WANG Q,et al.Local rough set:a solution to rough data analysis in big data[J].International Journal of Approximate Reasoning,2018,97:38-63. [13]ZHAO X,ZHANG Z H,ZHANG C W,et al.RGNE:A Net-work Embedding Method for Overlapping Community Detection Based on Rough Granulation[J].Journal of Computer Research and Development,2020,57(6):1302-1311. [14]SHI C,LIU J,ZHUANG F,et al.Integrating heterogeneous information via flexible regularization framework for recommendation[J].Knowledge and Information Systems,2016,49(3):835-859. [15]DAI F,GU X,LI B,et al.Meta-Graph Based Attention-Aware Recommendation over Heterogeneous Information Networks[C]//Proceedings of the International Conference on Computational Science.Springer,Cham,2019:580-594. [16]ZHANG Z W,CUI P,ZHU W W.Deep learning on graphs:A survey[J].arXiv:1812.04202v3,2020. [17]BERG R,KIPF T N,WELLING M.Graph convolutional matrixcompletion[C]//Proceedings of the 24th ACM SIGKDD Conference on Knowledge Discovery & Data Mining.2018. [18]ZHENG L,LU C T,JIANG F,et al.Spectral collaborative filtering[C]//Proceedings of the 12th ACM Conference on Recommender Systems.2018:311-319. [19]PENG H,LI J,GONG Q,et al.Fine-grained Event Categorization with Heterogeneous Graph Convolutional Networks[C]//Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence.IJCAI,2019:3238-3245. [20]WANG X,JI H,SHI C,et al.Heterogeneous Graph Attention Network[C]//Proceedings of the World Wide Web Conference.ACM,2019:2022-2032. [21]FAN S,ZHU J,HAN X,et al.Metapath-guided heterogeneous graph neural network for intent recommendation[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.2019:2478-2486. [22]SUN Y,HAN J,YAN X,et al.Pathsim:Meta path-based top-k similarity search in heterogeneous information networks[J].Proceedings of the VLDB Endowment,2011,4(11):992-1003. [23]VELIKOVI P,CUCURULL G,CASANOVA A,et al.Graph attention networks[C]//Proceedings of the 6th International Conference on Learning Representations.ICLR,2018. [24]HE X,LIAO L,ZHANG H,et al.Neural collaborative filtering[C]//Proceedings of the 26th International Conference on World Wide Web.2017:173-182. [25]KINGMA D P,BA J.Adam:a method for stochastic optimization[C]//Proceedings of the 3rd International Conference on Learning Representations.ICLR,2015. [26]RENDLE S,FREUDENTHALER C,GANTNER Z,et al.Bpr:Bayesian personalized ranking from implicit feedback[C]//Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence.UAI,2009:452-461. |
[1] | 史殿习, 赵琛然, 张耀文, 杨绍武, 张拥军. 基于多智能体强化学习的端到端合作的自适应奖励方法 Adaptive Reward Method for End-to-End Cooperation Based on Multi-agent Reinforcement Learning 计算机科学, 2022, 49(8): 247-256. https://doi.org/10.11896/jsjkx.210700100 |
[2] | 秦琪琦, 张月琴, 王润泽, 张泽华. 基于知识图谱的层次粒化推荐方法 Hierarchical Granulation Recommendation Method Based on Knowledge Graph 计算机科学, 2022, 49(8): 64-69. https://doi.org/10.11896/jsjkx.210600111 |
[3] | 檀莹莹, 王俊丽, 张超波. 基于图卷积神经网络的文本分类方法研究综述 Review of Text Classification Methods Based on Graph Convolutional Network 计算机科学, 2022, 49(8): 205-216. https://doi.org/10.11896/jsjkx.210800064 |
[4] | 曾伟良, 陈漪皓, 姚若愚, 廖睿翔, 孙为军. 时空图注意力网络在交叉口车辆轨迹预测的应用 Application of Spatial-Temporal Graph Attention Networks in Trajectory Prediction for Vehicles at Intersections 计算机科学, 2021, 48(6A): 334-341. https://doi.org/10.11896/jsjkx.200800066 |
[5] | 杜少华, 万怀宇, 武志昊, 林友芳. 融合文本序列和图信息的海关商品HS编码分类 Customs Commodity HS Code Classification Integrating Text Sequence and Graph Information 计算机科学, 2021, 48(4): 97-103. https://doi.org/10.11896/jsjkx.200900053 |
[6] | 张良成, 王运锋. 动态自适应的多雷达信息加权融合方法 Dynamic Adaptive Multi-radar Tracks Weighted Fusion Method 计算机科学, 2020, 47(11A): 321-326. https://doi.org/10.11896/jsjkx.2004000145 |
[7] | 徐朝辉,廉飞宇,付麦霞. 多智能代理决策交互的博弈问题研究 Study on Game Theory in Decision Interaction for Multi Intelligent Agents Based on Information Fusion 计算机科学, 2013, 40(7): 196-200. |
[8] | 胡振涛,刘宇,杨树军. 多传感器量测下权重优化粒子滤波算法 Weights Optimization Particle Filter Algorithm in Multi-sensor Measurement 计算机科学, 2013, 40(12): 152-155. |
[9] | 巫茜,蔡海尼,黄丽丰. 基于主成分分析的多源特征融合故障诊断方法 Feature-level Fusion Fault Diagnosis Based on PCA 计算机科学, 2011, 38(1): 268-270. |
|