计算机科学 ›› 2021, Vol. 48 ›› Issue (7): 340-346.doi: 10.11896/jsjkx.200900001

• 计算机网络 • 上一篇    

一种传输时限下认知无线电网络的动态广播策略

房婷1, 宫傲宇1, 张帆1, 林艳1, 贾林琼1,2, 张一晋1   

  1. 1 南京理工大学电子工程与光电技术学院 南京210094
    2 东南大学移动通信国家重点实验室 南京210018
  • 收稿日期:2020-09-01 修回日期:2021-01-09 出版日期:2021-07-15 发布日期:2021-07-02
  • 通讯作者: 张一晋(yijin.zhang@gmail.com)
  • 基金资助:
    国家自然科学基金(62071236, 62001225);中央高校基本科研业务经费(30920021127, 30919011227);江苏省自然科学基金(BK20190454);东南大学移动通信国家重点实验室开放研究基金资助课题(2020D19)

Dynamic Broadcasting Strategy in Cognitive Radio Networks Under Delivery Deadline

FANG Ting1, GONG Ao-yu1, ZHANG Fan1, LIN Yan1, JIA Lin-qiong1,2, ZHANG Yi-jin1   

  1. 1 School of Electronic and Optical Engineering,Nanjing University of Science and Technology,Nanjing 210094,China
    2 National Mobile Communications Research Laboratory,Southeast University,Nanjing 210018,China
  • Received:2020-09-01 Revised:2021-01-09 Online:2021-07-15 Published:2021-07-02
  • About author:FANG Ting,born in 1998,postgra-duate,is a member of China Computer Federation.Her main research interests include design and optimization for protocols in wireless networks.(ting.fang@njust.edu.cn)
    ZHANG Yi-jin,born in 1982,Ph.D,professor.His main research interests include sequence design,wireless networks,and artificial intelligence.
  • Supported by:
    National Natural Science Foundation of China(62071236,62001225),Fundamental Research Funds for the Central Universities of China(30920021127,30919011227),Natural Science Foundation of Jiangsu Province(BK20190454) and Open Research Fund of National Mobile Communications Research Laboratory,Southeast University(2020D19).

摘要: 在具有传输时限要求的认知无线电网络中,次用户需要机会式地在给定传输时限内使用无主用户占用的信道广播消息。针对此场景,文中提出一种新的传输时限下认知无线电网络的动态广播策略,允许各等待发送数据的次用户根据每个时隙载波侦听的观测、传输时限剩余时间和主用户占用信道模型实时调整发送概率。首先基于马尔可夫决策过程获得一种载波侦听理想观测假设下的最优策略和最大网络可靠性;然后据此提出一种适用于载波侦听实际观测能力的启发式策略,并通过马尔可夫决策过程建模获得此启发式策略的网络可靠性。仿真结果验证了理论分析的准确性,同时表明所提出的启发式策略的可靠性非常接近理想观测下的最大可靠性,并且明显优于最优静态策略的网络可靠性。

关键词: 传输时限, 动态广播策略, 可靠性, 马尔可夫决策过程, 认知无线电

Abstract: In cognitive radio networks with delivery deadline requirements,secondary users need to opportunistically broadcast messages using the channel unoccupied by primary users (PUs) within a given delivery deadline.For this scenario,this paper proposes a new cognitive radio network dynamic broadcasting strategy under delivery deadline,which allows each secondary user (SU) to adjust the transmission probability according to the observation of carrier sensing in each slot,the remaining time before deadline expiration and the PU traffic model.Based on an ideal assumption on the observation of carrier sensing,this paper obtains an optimal broadcasting strategy and the maximum network reliability using Markov decision process (MDP).Then,accor-ding to a practical observation capability of carrier sensing,this paper proposes a heuristic broadcasting strategy and uses another MDP to obtain the network reliability of this heuristic strategy.Simulation results verify the accuracy of the analysis and show that the network reliability of the proposed heuristic strategyis very close to the maximum network reliability under the ideal observation,and is superior to that of the optimal statics trategy.

Key words: Cognitive radio, Delivery deadline, Dynamic broadcasting strategy, Markov decision process, Reliability

中图分类号: 

  • TN911
[1]KHAN A A,REHMANI M H,RACHEDI A.Cognitive-radio-based Internet of things:Applications,architectures,spectrum related functionalities,and future research directions[J].IEEE Wireless Communications,2017,24(3):17-25.
[2]RYSZARD S.Cognitive radio,spectrum,and evolutionary heuristics[J].IEEE Communications Magazine,2018,56(6):166-171.
[3]POPOVSKI P,NIELSEN J J,STWFANOVIC C,et al.Wireless access for ultra-reliable low-latency communication:principles and building blocks[J].IEEE Network,2018,32(2):16-23.
[4]BENNIS M,DEBBAH M,POOR H V.Ultra-reliable and low-latency wireless communication:Tail,risk and scale[J].Proceeding of IEEE,2018,106(10):1834-1853.
[5]DENG L,DENG J,CHEN P N.On the asymptotic performance of delay-constrained slotted ALOHA[C]//27th International Conference on Computer Communication and Networks (ICCCN).2018:1-8.
[6]BAE Y H.Analysis of optimal random access for broadcasting with deadline in cognitive radio networks[J].IEEE Communications Letters,2013,17(3):573-575.
[7]BAE Y H.Optimal retransmission-based broadcasting under delivery deadline constraint[J].IEEE Communications Letters,2015,19(6):1041-1044.
[8]BAE Y H.Queueing analysis of deadline-constrained broadcas-ting in wireless networks[J].IEEE Communications Letters,2015,19(10):1782-1785.
[9]BAE Y H.Modeling timely-delivery ratio of slotted aloha with energy harvesting[J].IEEE Communications Letters,2017,21(8):1823-1826.
[10]ZHANG Y,LO Y H,SHU F,et al.Achieving maximum relia-bilityin deadline-constrained random access with multiple-packetreception[J].IEEE Transactions on Vehicular Technology,2019,68(6):5997-6008.
[11]SULTANA A,FERNANDO X,ZHAO L.An overview of mediumaccess control strategies for opportunistic spectrum access in cognitive radio networks[J].Peer-to-Peer Networking and Applications,2017,10:1113-1141.
[12]ZHAO Q,TONG L,SWAMI A,et al.Decentralized cognitive MAC for opportunistic spectrum access in ad hoc networks:A POMDP framework[J].IEEE Journal on Selected Areas in Communications,2007,25(3):589-600.
[13]JODA R,ZORZI M.Access policy design for cognitive secondary users under a primary type-I HARQ process[J].IEEE Transactions on Communications,2015,63(11):4037-4049.
[14]URGAONKAR R,NEELY M J.Opportunistic scheduling with reliability guarantees in cognitive radio networks[J].IEEE Transactions on Mobile Computing,2019,8(6):766-777.
[15]NAPARSTEK O,COHEN K.Deep multi-user reinforcementlearning for distributed dynamic spectrum access[J].IEEE Transactions on Wireless Communications,2019,18(1):310-323.
[16]EWAISHA A E,TEPEDELENLIOGLU C.Throughput optimization in multichannel cognitive radios with hard-deadline constraints[J].IEEE Transactions on Vehicular Technology,2016,65(4):2355-2368.
[17]XU D,LI Q.Cooperative resource allocation in cognitive wireless powered communication networks with energy accumulation and deadline requirements[J].SCIENCE CHINA Information Sciences 2019,62(8):141-154.
[18]THAKUR P,KUMAR A,PANDIT S,et al.Frameworks of non-orthogonal multiple access techniques in cognitive radio communication systems[J].China Communications,2019,16(6):129-149.
[19]LI Y,ZHOU J,WANG J,et al.On data dissemination enhanced by network coded device-to-device communications[J].IEEE Transactions on Wireless Communications,2020,19(6):3963-3976.
[1] 王鑫, 周泽宝, 余芸, 陈禹旭, 任昊文, 蒋一波, 孙凌云.
一种面向电能量数据的联邦学习可靠性激励机制
Reliable Incentive Mechanism for Federated Learning of Electric Metering Data
计算机科学, 2022, 49(3): 31-38. https://doi.org/10.11896/jsjkx.210700195
[2] 周琴, 罗飞, 丁炜超, 顾春华, 郑帅.
基于逐次超松弛技术的Double Speedy Q-Learning算法
Double Speedy Q-Learning Based on Successive Over Relaxation
计算机科学, 2022, 49(3): 239-245. https://doi.org/10.11896/jsjkx.201200173
[3] 张帆, 宫傲宇, 邓磊, 刘芳, 林艳, 张一晋.
面向实际信道观测环境的时限约束无线下行调度策略
Wireless Downlink Scheduling with Deadline Constraint for Realistic Channel Observation Environment
计算机科学, 2021, 48(9): 264-270. https://doi.org/10.11896/jsjkx.210100143
[4] 王英恺, 王青山.
能量收集无线通信系统中基于强化学习的能量分配策略
Reinforcement Learning Based Energy Allocation Strategy for Multi-access Wireless Communications with Energy Harvesting
计算机科学, 2021, 48(7): 333-339. https://doi.org/10.11896/jsjkx.201100154
[5] 亓慧, 史颖, 李灯熬, 穆晓芳, 侯明星.
基于连续型深度置信神经网络的软件可靠性预测
Software Reliability Prediction Based on Continuous Deep Confidence Neural Network
计算机科学, 2021, 48(5): 86-90. https://doi.org/10.11896/jsjkx.210200055
[6] 冯凯, 马鑫玉.
(n,k)-冒泡排序网络的子网络可靠性
Subnetwork Reliability of (n,k)-bubble-sort Networks
计算机科学, 2021, 48(4): 43-48. https://doi.org/10.11896/jsjkx.201100139
[7] 秦智慧, 李宁, 刘晓彤, 刘秀磊, 佟强, 刘旭红.
无模型强化学习研究综述
Overview of Research on Model-free Reinforcement Learning
计算机科学, 2021, 48(3): 180-187. https://doi.org/10.11896/jsjkx.200700217
[8] 余力, 杜启翰, 岳博妍, 向君瑶, 徐冠宇, 冷友方.
基于强化学习的推荐研究综述
Survey of Reinforcement Learning Based Recommender Systems
计算机科学, 2021, 48(10): 1-18. https://doi.org/10.11896/jsjkx.210200085
[9] 冯凯, 李婧.
k元n方体的子网络可靠性研究
Study on Subnetwork Reliability of k-ary n-cubes
计算机科学, 2020, 47(7): 31-36. https://doi.org/10.11896/jsjkx.190700170
[10] 庄奕, 杨家海.
限时点到多点跨数据中心传输的多源树调度算法
Multi-source Tree-based Scheduling Algorithm for Deadline-aware P2MP Inter-datacenter Transfers
计算机科学, 2020, 47(7): 213-219. https://doi.org/10.11896/jsjkx.200300069
[11] 王慧妍, 徐经纬, 许畅.
环境感知自适应软件的运行时输入验证技术综述
Survey on Runtime Input Validation for Context-aware Adaptive Software
计算机科学, 2020, 47(6): 1-7. https://doi.org/10.11896/jsjkx.200400081
[12] 程煜, 刘伟, 孙童心, 魏志刚, 杜薇.
近阈值电压下可容错的一级缓存结构设计
Design of Fault-tolerant L1 Cache Architecture at Near-threshold Voltage
计算机科学, 2020, 47(4): 42-49. https://doi.org/10.11896/jsjkx.190300088
[13] 田苗苗, 王祖林, 徐迈.
基于认知无线电的DVB-S2信号接收与解析
DVB-S2 Signal Receiving and Analysis Based on Cognitive Radio
计算机科学, 2020, 47(4): 226-232. https://doi.org/10.11896/jsjkx.190700210
[14] 李苏婷,张严.
GSOS算子下共变-异变模拟的公理刻画
Axiomatizing Covariation-Contravariation Simulation Under GSOS Operators
计算机科学, 2020, 47(1): 51-58. https://doi.org/10.11896/jsjkx.181102026
[15] 薛玲玲, 樊秀梅.
基于分簇结构的车联网认知频谱分配机制
Cognitive Spectrum Allocation Mechanism in Internet of Vehicles Based on Clustering Structure
计算机科学, 2019, 46(9): 143-149. https://doi.org/10.11896/j.issn.1002-137X.2019.09.020
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!