计算机科学 ›› 2022, Vol. 49 ›› Issue (3): 31-38.doi: 10.11896/jsjkx.210700195

• 新兴分布式计算技术与系统* 上一篇    下一篇

一种面向电能量数据的联邦学习可靠性激励机制

王鑫1,3,4, 周泽宝1, 余芸2, 陈禹旭2, 任昊文2, 蒋一波1, 孙凌云3,4   

  1. 1 浙江工业大学计算机科学与技术学院 杭州310023
    2 中国南方电网数字电网研究院有限公司 广州510663
    3 浙江大学南方电网人工智能创新联合研究中心 杭州310058
    4 浙江大学计算机科学与技术学院 杭州310058
  • 收稿日期:2021-07-19 修回日期:2021-08-16 出版日期:2022-03-15 发布日期:2022-03-15
  • 通讯作者: 王鑫(xinw@zjut.edu.cn)
  • 基金资助:
    国家重点研发计划(2020YFB0906004)

Reliable Incentive Mechanism for Federated Learning of Electric Metering Data

WANG Xin1,3,4, ZHOU Ze-bao1, YU Yun2, CHEN Yu-xu2, REN Hao-wen2, JIANG Yi-bo1, SUN Ling-yun3,4   

  1. 1 College of Computer Science and Technology,Zhejiang University of Technology,Hangzhou 310023,China
    2 Digital Grid Research Institute Co.Ltd.,China Southern Power Grid,Guangzhou 510663,China
    3 Zhejiang University-China Southern Power Grid Joint Research Centre on AI,Hangzhou 310058,China
    4 College of Computer Science and Technology,Zhejiang University,Hangzhou 310058,China
  • Received:2021-07-19 Revised:2021-08-16 Online:2022-03-15 Published:2022-03-15
  • About author:WANG Xin,born in 1984,Ph.D,asso-ciate professor,master supervisor,is a member of China Computer Federation.His main research interests include machine learning,big data analysis and federated learning.
  • Supported by:
    National Key R & D Program of China (2020YFB0906004).

摘要: 联邦学习解决了数据安全日益受到重视条件下的数据互用难题,但是传统联邦学习缺少鼓励和吸引数据拥有方参与到联邦学习中的激励机制,联邦学习审核机制的缺失给恶意节点进行破坏攻击提供了可能性。针对这个问题,文中提出基于区块链技术的面向电能量数据的可靠的联邦学习激励机制。该方法从对数据参与方的训练参与进行奖励和对数据参与方的数据可靠性进行评估两方面入手,设计算法对数据参与方的训练效果进行评估,从训练效果和训练成本等角度来确定数据参与方的贡献度,并根据贡献度来对参与方进行奖励,同时针对数据参与方的可靠性建立声望模型,根据训练效果对数据参与方的声望进行更新,藉此实现对数据参与方的可靠性评估。基于联邦学习开源框架和真实电能量数据进行算例分析,所得结果验证了所提方法的有效性。

关键词: 电力计量, 激励机制, 可靠性, 联邦学习, 区块链, 声望模型

Abstract: Federated learning has solved the problem of data interoperability under the premise of satisfying user privacy protection and data security.However,traditional federated learning lacks an incentive mechanism to encourage and attract data owners to participate in federated learning.Meanwhile,the lack of a federated learning audit mechanism provides the possibility for malicious nodes to conduct sabotage attacks.In response to this problem,this paper proposes a reliable federated learning incentive mechanism for electric metering data based on blockchain technology.This method starts from two aspects:rewarding data parti-cipants for training participation and evaluating data reliability for all of them.We design an algorithm to evaluate the training effect of data participants.The contribution of data participants is determined from the perspective of training effect and training cost,and the participants are rewarded according to the contribution.At the same time,a reputation model is established for the reliability of the data participants,and the reputation of the data participants is updated according to the training effect,so as to achieve the reliability assessment for data participants.Based on the open-source framework of federated learning and real electric metering data,a case study is carried out,and the obtained results verify the effectiveness of our method.

Key words: Blockchain, Electricity metering, Federated learning, Incentive mechanism, Reliability, Reputation model

中图分类号: 

  • TP391
[1]SHU N,LIU B,LIN W W,et al.Survey of Distributed Machine Learning Platforms and Algorithms[J].Computer Science,2019,46(3):9-18.
[2]MCMAHAN H B,MOORE E,RAMAGE D,et al.Communication-Efficient Learning of Deep Networks from Decentralized Data[C]//AISTATS.2017:1273-1282.
[3]YANG Q.AI and Data Privacy Protection:the Way to Federated Learning[J].Journal of Information Security Research,2019,5(11):961-965.
[4]ZHENG K H,XIAO Y,WANG X,et al.A Federated Learning Framework for Electricity Metering System[J].Proceedings of The CSEE,2020,40(S1):122-133.
[5]LIAO X K,WANG L S.Research on Incentive MechanismBased on Social Norms and Boycott[J].Computer Science,2014,41(4):28-30,35.
[6]LI J,WU S Q,ZHANG S L,et al.Trusted Storage Mechanism of Distributed Electric Energy Data Based on Blockchain[J].Chinese Journal of Network and Information Security,2020,6(2):87-95.
[7]BAO X L,SU C,XIONG Y,et al.FLChain:A Blockchain forAuditable Federated Learning with Trust and Incentive[C]//BigCom.2019:151-159.
[8]SHORT A R,LELIGOU H C,PAPOUTSIDAKIS M,et al.Using Blockchain Technologies to Improve Security in Federated Learning Systems[C]//2020 IEEE 44th Annual Computers,Software,and Applications Conference (COMPSAC).IEEE,2020.
[9]ISMAEL M,SREYA F,ABDELHAKIM S H.Record and Reward Federated Learning Contributions with Blockchain[C]//CyberC.2019:50-57.
[10]TOYODA K,ZHANG A N.Mechanism Design for An Incentive-aware Blockchain-enabled Federated Learning Platform[C]//BigData.2019:395-403.
[11]WENG J S,WENG J,LI M,et al.DeepChain:Auditable and Privacy-Preserving Deep Learning with Blockchain-based Incentive[J].IEEE Transactions on Dependable and Secure Computing,2021,18(5):2438-2455.
[12]HAN Y,LIU Z L,LIU Y,et al.A Fairness-aware Incentive Scheme for Federated Learning[C]//AIES.2020:393-399.
[13]KANG J W,XIONG Z H,NIYATO D,et al.Incentive Mechanism for Reliable Federated Learning:A Joint Optimization Approach to Combining Reputation and Contract Theory[J].IEEE Internet Things of Journal.2019,6(6):10700-10714.
[14]TANG J.Nodes Incentive Strategy Based on Bayesian Game in Ad Hoc Networks[J].Computer Engineering,2019,45(8):152-158,164.
[15]ZHOU Q,LI P,NIE L.User Incentive Mechanism Based onSpatial-Temporal Correlation for Crowd Sensing[J].Computer Engineering,2021,47(3):227-236.
[16]YANG Q,LIU Y,CHENG Y,et al.Federated Learing[M].Beijing:Publishing House of Electronics Industry,2020:11-16.
[17]GUO S T,WANG R J,ZHANG F L.Summary of Principle and Application of Blockchain[J].Computer Science,2021,48(2):271-281.
[18]YUAN Y,NI X C,ZENG S,et al.The Development Status and Prospects of Blockchain Consensus Algorithms[J].Acta Automatica Sinica,2018,44(11):2011-2022.
[19]CHENG L,WANG W G.Research on Bitcoin Mining Optimization Based on SHA256 Hash Algorithm[J].Information Technology and Informatization,2015,10(1):158-159.
[20]CHENG K W,FAN T,JIN Y L,et al.SecureBoost:A Lossless Federated Learning Framework[J].arXiv:1901.08755,2021.
[21]HOU Z W,CHEN H,LI Y H.Branka Vucetic:Incentive Mechanism Design for Wireless Energy Harvesting-Based Internet of Things[J].IEEE Internet of Things Journal,2018,5(4):2620-2632.
[1] 鲁晨阳, 邓苏, 马武彬, 吴亚辉, 周浩浩.
基于分层抽样优化的面向异构客户端的联邦学习
Federated Learning Based on Stratified Sampling Optimization for Heterogeneous Clients
计算机科学, 2022, 49(9): 183-193. https://doi.org/10.11896/jsjkx.220500263
[2] 傅彦铭, 朱杰夫, 蒋侃, 黄保华, 孟庆文, 周兴.
移动众包中基于多约束工人择优的激励机制研究
Incentive Mechanism Based on Multi-constrained Worker Selection in Mobile Crowdsourcing
计算机科学, 2022, 49(9): 275-282. https://doi.org/10.11896/jsjkx.210700129
[3] 汤凌韬, 王迪, 张鲁飞, 刘盛云.
基于安全多方计算和差分隐私的联邦学习方案
Federated Learning Scheme Based on Secure Multi-party Computation and Differential Privacy
计算机科学, 2022, 49(9): 297-305. https://doi.org/10.11896/jsjkx.210800108
[4] 王子凯, 朱健, 张伯钧, 胡凯.
区块链与智能合约并行方法研究与实现
Research and Implementation of Parallel Method in Blockchain and Smart Contract
计算机科学, 2022, 49(9): 312-317. https://doi.org/10.11896/jsjkx.210800102
[5] 陈明鑫, 张钧波, 李天瑞.
联邦学习攻防研究综述
Survey on Attacks and Defenses in Federated Learning
计算机科学, 2022, 49(7): 310-323. https://doi.org/10.11896/jsjkx.211000079
[6] 傅丽玉, 陆歌皓, 吴义明, 罗娅玲.
区块链技术的研究及其发展综述
Overview of Research and Development of Blockchain Technology
计算机科学, 2022, 49(6A): 447-461. https://doi.org/10.11896/jsjkx.210600214
[7] 高健博, 张家硕, 李青山, 陈钟.
RegLang:一种面向监管的智能合约编程语言
RegLang:A Smart Contract Programming Language for Regulation
计算机科学, 2022, 49(6A): 462-468. https://doi.org/10.11896/jsjkx.210700016
[8] 闫萌, 林英, 聂志深, 曹一凡, 皮欢, 张兰.
一种提高联邦学习模型鲁棒性的训练方法
Training Method to Improve Robustness of Federated Learning
计算机科学, 2022, 49(6A): 496-501. https://doi.org/10.11896/jsjkx.210400298
[9] 毛典辉, 黄晖煜, 赵爽.
符合监管合规性的自动合成新闻检测方法研究
Study on Automatic Synthetic News Detection Method Complying with Regulatory Compliance
计算机科学, 2022, 49(6A): 523-530. https://doi.org/10.11896/jsjkx.210300083
[10] 李博, 向海昀, 张宇翔, 廖浩德.
面向食品溯源场景的PBFT优化算法应用研究
Application Research of PBFT Optimization Algorithm for Food Traceability Scenarios
计算机科学, 2022, 49(6A): 723-728. https://doi.org/10.11896/jsjkx.210800018
[11] 鲁晨阳, 邓苏, 马武彬, 吴亚辉, 周浩浩.
基于DBSCAN聚类的集群联邦学习方法
Clustered Federated Learning Methods Based on DBSCAN Clustering
计算机科学, 2022, 49(6A): 232-237. https://doi.org/10.11896/jsjkx.211100059
[12] 周航, 姜河, 赵琰, 解相朋.
适用于各单元共识交易的电力区块链系统优化调度研究
Study on Optimal Scheduling of Power Blockchain System for Consensus Transaction ofEach Unit
计算机科学, 2022, 49(6A): 771-776. https://doi.org/10.11896/jsjkx.210600241
[13] 王思明, 谭北海, 余荣.
面向6G可信可靠智能的区块链分片与激励机制
Blockchain Sharding and Incentive Mechanism for 6G Dependable Intelligence
计算机科学, 2022, 49(6): 32-38. https://doi.org/10.11896/jsjkx.220400004
[14] 孙浩, 毛瀚宇, 张岩峰, 于戈, 徐石成, 何光宇.
区块链跨链技术发展及应用
Development and Application of Blockchain Cross-chain Technology
计算机科学, 2022, 49(5): 287-295. https://doi.org/10.11896/jsjkx.210800132
[15] 阳真, 黄松, 郑长友.
基于区块链与改进CP-ABE的众测知识产权保护技术研究
Study on Crowdsourced Testing Intellectual Property Protection Technology Based on Blockchain and Improved CP-ABE
计算机科学, 2022, 49(5): 325-332. https://doi.org/10.11896/jsjkx.210900075
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!