计算机科学 ›› 2022, Vol. 49 ›› Issue (3): 31-38.doi: 10.11896/jsjkx.210700195
王鑫1,3,4, 周泽宝1, 余芸2, 陈禹旭2, 任昊文2, 蒋一波1, 孙凌云3,4
WANG Xin1,3,4, ZHOU Ze-bao1, YU Yun2, CHEN Yu-xu2, REN Hao-wen2, JIANG Yi-bo1, SUN Ling-yun3,4
摘要: 联邦学习解决了数据安全日益受到重视条件下的数据互用难题,但是传统联邦学习缺少鼓励和吸引数据拥有方参与到联邦学习中的激励机制,联邦学习审核机制的缺失给恶意节点进行破坏攻击提供了可能性。针对这个问题,文中提出基于区块链技术的面向电能量数据的可靠的联邦学习激励机制。该方法从对数据参与方的训练参与进行奖励和对数据参与方的数据可靠性进行评估两方面入手,设计算法对数据参与方的训练效果进行评估,从训练效果和训练成本等角度来确定数据参与方的贡献度,并根据贡献度来对参与方进行奖励,同时针对数据参与方的可靠性建立声望模型,根据训练效果对数据参与方的声望进行更新,藉此实现对数据参与方的可靠性评估。基于联邦学习开源框架和真实电能量数据进行算例分析,所得结果验证了所提方法的有效性。
中图分类号:
[1]SHU N,LIU B,LIN W W,et al.Survey of Distributed Machine Learning Platforms and Algorithms[J].Computer Science,2019,46(3):9-18. [2]MCMAHAN H B,MOORE E,RAMAGE D,et al.Communication-Efficient Learning of Deep Networks from Decentralized Data[C]//AISTATS.2017:1273-1282. [3]YANG Q.AI and Data Privacy Protection:the Way to Federated Learning[J].Journal of Information Security Research,2019,5(11):961-965. [4]ZHENG K H,XIAO Y,WANG X,et al.A Federated Learning Framework for Electricity Metering System[J].Proceedings of The CSEE,2020,40(S1):122-133. [5]LIAO X K,WANG L S.Research on Incentive MechanismBased on Social Norms and Boycott[J].Computer Science,2014,41(4):28-30,35. [6]LI J,WU S Q,ZHANG S L,et al.Trusted Storage Mechanism of Distributed Electric Energy Data Based on Blockchain[J].Chinese Journal of Network and Information Security,2020,6(2):87-95. [7]BAO X L,SU C,XIONG Y,et al.FLChain:A Blockchain forAuditable Federated Learning with Trust and Incentive[C]//BigCom.2019:151-159. [8]SHORT A R,LELIGOU H C,PAPOUTSIDAKIS M,et al.Using Blockchain Technologies to Improve Security in Federated Learning Systems[C]//2020 IEEE 44th Annual Computers,Software,and Applications Conference (COMPSAC).IEEE,2020. [9]ISMAEL M,SREYA F,ABDELHAKIM S H.Record and Reward Federated Learning Contributions with Blockchain[C]//CyberC.2019:50-57. [10]TOYODA K,ZHANG A N.Mechanism Design for An Incentive-aware Blockchain-enabled Federated Learning Platform[C]//BigData.2019:395-403. [11]WENG J S,WENG J,LI M,et al.DeepChain:Auditable and Privacy-Preserving Deep Learning with Blockchain-based Incentive[J].IEEE Transactions on Dependable and Secure Computing,2021,18(5):2438-2455. [12]HAN Y,LIU Z L,LIU Y,et al.A Fairness-aware Incentive Scheme for Federated Learning[C]//AIES.2020:393-399. [13]KANG J W,XIONG Z H,NIYATO D,et al.Incentive Mechanism for Reliable Federated Learning:A Joint Optimization Approach to Combining Reputation and Contract Theory[J].IEEE Internet Things of Journal.2019,6(6):10700-10714. [14]TANG J.Nodes Incentive Strategy Based on Bayesian Game in Ad Hoc Networks[J].Computer Engineering,2019,45(8):152-158,164. [15]ZHOU Q,LI P,NIE L.User Incentive Mechanism Based onSpatial-Temporal Correlation for Crowd Sensing[J].Computer Engineering,2021,47(3):227-236. [16]YANG Q,LIU Y,CHENG Y,et al.Federated Learing[M].Beijing:Publishing House of Electronics Industry,2020:11-16. [17]GUO S T,WANG R J,ZHANG F L.Summary of Principle and Application of Blockchain[J].Computer Science,2021,48(2):271-281. [18]YUAN Y,NI X C,ZENG S,et al.The Development Status and Prospects of Blockchain Consensus Algorithms[J].Acta Automatica Sinica,2018,44(11):2011-2022. [19]CHENG L,WANG W G.Research on Bitcoin Mining Optimization Based on SHA256 Hash Algorithm[J].Information Technology and Informatization,2015,10(1):158-159. [20]CHENG K W,FAN T,JIN Y L,et al.SecureBoost:A Lossless Federated Learning Framework[J].arXiv:1901.08755,2021. [21]HOU Z W,CHEN H,LI Y H.Branka Vucetic:Incentive Mechanism Design for Wireless Energy Harvesting-Based Internet of Things[J].IEEE Internet of Things Journal,2018,5(4):2620-2632. |
[1] | 鲁晨阳, 邓苏, 马武彬, 吴亚辉, 周浩浩. 基于分层抽样优化的面向异构客户端的联邦学习 Federated Learning Based on Stratified Sampling Optimization for Heterogeneous Clients 计算机科学, 2022, 49(9): 183-193. https://doi.org/10.11896/jsjkx.220500263 |
[2] | 傅彦铭, 朱杰夫, 蒋侃, 黄保华, 孟庆文, 周兴. 移动众包中基于多约束工人择优的激励机制研究 Incentive Mechanism Based on Multi-constrained Worker Selection in Mobile Crowdsourcing 计算机科学, 2022, 49(9): 275-282. https://doi.org/10.11896/jsjkx.210700129 |
[3] | 汤凌韬, 王迪, 张鲁飞, 刘盛云. 基于安全多方计算和差分隐私的联邦学习方案 Federated Learning Scheme Based on Secure Multi-party Computation and Differential Privacy 计算机科学, 2022, 49(9): 297-305. https://doi.org/10.11896/jsjkx.210800108 |
[4] | 王子凯, 朱健, 张伯钧, 胡凯. 区块链与智能合约并行方法研究与实现 Research and Implementation of Parallel Method in Blockchain and Smart Contract 计算机科学, 2022, 49(9): 312-317. https://doi.org/10.11896/jsjkx.210800102 |
[5] | 陈明鑫, 张钧波, 李天瑞. 联邦学习攻防研究综述 Survey on Attacks and Defenses in Federated Learning 计算机科学, 2022, 49(7): 310-323. https://doi.org/10.11896/jsjkx.211000079 |
[6] | 傅丽玉, 陆歌皓, 吴义明, 罗娅玲. 区块链技术的研究及其发展综述 Overview of Research and Development of Blockchain Technology 计算机科学, 2022, 49(6A): 447-461. https://doi.org/10.11896/jsjkx.210600214 |
[7] | 高健博, 张家硕, 李青山, 陈钟. RegLang:一种面向监管的智能合约编程语言 RegLang:A Smart Contract Programming Language for Regulation 计算机科学, 2022, 49(6A): 462-468. https://doi.org/10.11896/jsjkx.210700016 |
[8] | 闫萌, 林英, 聂志深, 曹一凡, 皮欢, 张兰. 一种提高联邦学习模型鲁棒性的训练方法 Training Method to Improve Robustness of Federated Learning 计算机科学, 2022, 49(6A): 496-501. https://doi.org/10.11896/jsjkx.210400298 |
[9] | 毛典辉, 黄晖煜, 赵爽. 符合监管合规性的自动合成新闻检测方法研究 Study on Automatic Synthetic News Detection Method Complying with Regulatory Compliance 计算机科学, 2022, 49(6A): 523-530. https://doi.org/10.11896/jsjkx.210300083 |
[10] | 李博, 向海昀, 张宇翔, 廖浩德. 面向食品溯源场景的PBFT优化算法应用研究 Application Research of PBFT Optimization Algorithm for Food Traceability Scenarios 计算机科学, 2022, 49(6A): 723-728. https://doi.org/10.11896/jsjkx.210800018 |
[11] | 鲁晨阳, 邓苏, 马武彬, 吴亚辉, 周浩浩. 基于DBSCAN聚类的集群联邦学习方法 Clustered Federated Learning Methods Based on DBSCAN Clustering 计算机科学, 2022, 49(6A): 232-237. https://doi.org/10.11896/jsjkx.211100059 |
[12] | 周航, 姜河, 赵琰, 解相朋. 适用于各单元共识交易的电力区块链系统优化调度研究 Study on Optimal Scheduling of Power Blockchain System for Consensus Transaction ofEach Unit 计算机科学, 2022, 49(6A): 771-776. https://doi.org/10.11896/jsjkx.210600241 |
[13] | 王思明, 谭北海, 余荣. 面向6G可信可靠智能的区块链分片与激励机制 Blockchain Sharding and Incentive Mechanism for 6G Dependable Intelligence 计算机科学, 2022, 49(6): 32-38. https://doi.org/10.11896/jsjkx.220400004 |
[14] | 孙浩, 毛瀚宇, 张岩峰, 于戈, 徐石成, 何光宇. 区块链跨链技术发展及应用 Development and Application of Blockchain Cross-chain Technology 计算机科学, 2022, 49(5): 287-295. https://doi.org/10.11896/jsjkx.210800132 |
[15] | 阳真, 黄松, 郑长友. 基于区块链与改进CP-ABE的众测知识产权保护技术研究 Study on Crowdsourced Testing Intellectual Property Protection Technology Based on Blockchain and Improved CP-ABE 计算机科学, 2022, 49(5): 325-332. https://doi.org/10.11896/jsjkx.210900075 |
|