计算机科学 ›› 2021, Vol. 48 ›› Issue (9): 103-109.doi: 10.11896/jsjkx.200800129

所属专题: 智能数据治理技术与系统

• 智能数据治理技术与系统* 上一篇    下一篇

融合偏置深度学习的距离分解Top-N推荐算法

钱梦薇1, 过弋1,2,3   

  1. 1 华东理工大学信息科学与工程学院 上海 200237
    2 大数据流通与交易技术国家工程实验室-商业智能与可视化技术研究中心 上海 200436
    3 上海大数据与互联网受众工程技术研究中心 上海 200072
  • 收稿日期:2020-08-20 修回日期:2020-11-01 出版日期:2021-09-15 发布日期:2021-09-10
  • 通讯作者: 过弋(guoyi@ecust.edu.cn)
  • 作者简介:ww649960358@foxmail.com
  • 基金资助:
    国家重点研发计划(2018YFC0807105);国家自然科学基金项目(61462073);上海市科学技术委员会科研计划项目(17DZ1101003,18511106602,18DZ2252300)

Biased Deep Distance Factorization Algorithm for Top-N Recommendation

QIAN Meng-wei1 , GUO Yi 1,2,3   

  1. 1 School of Information Science and Engineering,East University of Science and Technology,Shanghai 200237,China
    2 Business Intelligence and Visualization Research Center,National Engineering Laboratory for Big Data Distribution and Exchange Technologies, Shanghai 200436,China
    3 Shanghai Internet Big Data Engineering Technology Research Center,Shanghai 200072,China
  • Received:2020-08-20 Revised:2020-11-01 Online:2021-09-15 Published:2021-09-10
  • About author:QIAN Meng-wei,born in 1996,postgraduate.Her main research interests include data mining and recommender system.
    GUO Yi,born in 1975,Ph.D,professor.His main research interests include text mining,knowledge discovery and business intelligence.
  • Supported by:
    National Key Research and Development Program of China(2018YFC0807105),National Natural Science Foundation of China(61462073) and Science and Technology Committee of Shanghai Municipality(17DZ1101003,18511106602,18DZ2252300).

摘要: 针对传统矩阵分解算法大多是浅层的线性模型,难以学习到深层次的用户和物品的隐特征向量,且在数据稀疏的情况下容易产生过拟合的问题,文中提出一种融合偏置深度学习的矩阵分解算法,在解决数据稀疏问题的同时,还能学习到表征能力更强的距离特征向量。首先,通过用户与物品的显式和隐式数据构建用户与物品的交互矩阵,并将交互矩阵转化为相应的距离矩阵;其次,将距离矩阵分别按行和按列输入加入偏置层的深度神经网络,学习得到具有非线性特征的用户和物品的距离特征向量;最后,根据用户和物品的距离特征向量计算用户和物品之间的距离,用距离值对物品按升序排列,生成Top-N的推荐列表。在4个真实数据集上进行实验,采用Precision,Recall,MAP,MRR和NDCG指标进行评估,结果表明所提算法在上述指标方面相比其他主流推荐算法有明显提升。

关键词: 距离分解, 偏置层, 深度学习, 物品排序

Abstract: Since traditional matrix factorization algorithms are mostly based on shallow linear models,it is difficult to learn latent factors of users and items at a deep level.When the dataset is sparse,it is inclined to overfitting.To deal with the problem,this paper proposes a biased deep distance factorization algorithm,which can not only solve the data sparse problem,but also learn the distance feature vectors with stronger characterization capabilities.Firstly,the interaction matrix is constructed through the explicit and implicit data of the user and the item.Then the interaction matrix is converted into the corresponding distance matrix.Secondly,the distance matrix is input into the depth of the bias layer by row and column respectively.The neural network learns the distance feature vectors of users and items with non-linear features.Finally,the distance between the user and the item is calculated according to the distance feature vectors.Top-N item recommended list is generated according to the distance value.The experimental results show that Precision,Recall,MAP,MRR and NDCG of this algorithm are significantly improved compared to other mainstream recommendation algorithms on four different datasets.

Key words: Biased layer, Deep learning, Distance factorization, Item ranking

中图分类号: 

  • TP191
[1]ZHANG S,YAO L,HUANG C,et al.Metric Factorization:Recommendation beyond Matrix Factorization[EB/OL].[2018-06-04].http://xxx.itp.ac.cn/pdf/1802.04606v2.
[2]DOU Z Y,WANG X,SHI S M,et al.Exploiting deep representations for natural language processing[J].Neurocomputing,2020,386:1-7.
[3]LI B,ZHAO J J,FU H.DLT-Net:deep learning transmittance network for single image haze removal[J].Signal,Image and Video Processing,2020,14(6):1245-1253.
[4]XIA Y.Research on statistical machine translation model based on deep neural network[J].Computing,2020,102(3):643-661.
[5]CHENG H T,KOC L,HARMSEN J,et al.Wide & DeepLearning for Recommender Systems[EB/OL].[2016-06-24].https://arxiv.org/pdf/1606.07792.pdf.
[6]YANG C,MIAO L H,JIANG B,et al.Gated and attentive neural collaborative filtering for user generated list recommendation[J].Knowledge-Based System,2020,187(8):78252-78264.
[7]ZHANG S,YAO L,WU B,et al.Unraveling Metric VectorSpaces with Factorization for Recommendation[J].IEEE Transactions on Industrial Informatics,2020,16(2):732-742.
[8]DAI H,WANG L J,QIN J W.Metric Factorization with Item Cooccurrence for Recommendation[J].Symmetry,2020,12(4):512.
[9]DZIUGAITE G K,DANIEL M R.Neural Network Matrix Factorization[EB/OL].[2015-12-15].https://arxiv.org/abs/1511.06443.
[10]SEDHAIN S,MENON A K,SANNER S,et al.AutoRec:Autoencoders Meet Collaborative Filtering[C]//International Conference on World Wide Web.2015:111-112.
[11]LI P J,WANG Z H,REN Z C,et al.Neural rating regression with abstractive tips generation for recommendation[C]//Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval.2017:345-354.
[12]HE X N,CHUA T S.Neural Factorization Machines for Sparse Predictive Analytics[C]//Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval.2017:355-364.
[13]XIAO J,YE H,HE X N,et al.Attentional factorization machines:Learning the weight of feature interactions via attention networks[C]//Proceedings of the 26th International Joint Conference on Artificial Intelligence.2017:3119-3125.
[14]RENDLE S,FREUDENTHALER C,GANTNER Z,et al.BPR:Bayesian personalized ranking from implicit feedback[C]//Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence.2009:452-461.
[15]HSIEH C K,YANG L Q,CUI Y,et al.Collaborative metriclearning[C]//Proceedings of the 26th International Conference on World Wide Web.2017:193-201.
[16]WU Y,DUBOIS C,ZHENG A X,et al.Collaborative denoising auto-encoders for top-n recommender systems[C]//Proceedings of the Ninth ACM International Conference on Web Search and Data Mining.2016:153-162.
[17]HE X N,LIAO L Z,ZHANG H W,et al.Neural Collaborative Filtering[C]//Proceedings of the 26th International Conference on World Wide Web.2017:173-182.
[18]TAY Y,TUAN L A,HUI S C.Latent relational metric learning via memory-based attention for collaborative ranking[C]//Proceedings of the 27th International Conference on World Wide Web.2018:729-739.
[19]FENG S S,LI X,ZENG Y F,et al.Personalized ranking metric embedding for next new poi recommendation[C]//Proceedings of the 24th International Joint Conference on Artificial Intelligence.2015:2069-2075.
[20]LIANG D,ALTOSAAR J,CHARLIN L,et al.FactorizationMeets the Item Embedding:Regularizing Matrix Factorization with Item Co-occurrence[C]//Proceedings of the 10th ACM Conference on Recommender Systems.2016:59-66.
[21]TANG J X,WANG K.Personalized top-n sequential recommendation via convolutional sequence embedding[C]//Proceedings of the 11th ACM International Conference on Web Search and Data Mining.2018:565-573.
[22]ZHANG S,TAY Y,YAO L,et al.Next Item Recommendation with Self-Attentive Metric Learning[C]//Proceedings of the 33th AAAI Conference on Artificial Intelligence.2019:9-19.
[23]MISRA D.Mish:A Self Regularized Non-Monotonic Neural Activation Function[EB/OL].[2020-08-13].https://arxiv.org/abs/1908.08681.
[1] 饶志双, 贾真, 张凡, 李天瑞.
基于Key-Value关联记忆网络的知识图谱问答方法
Key-Value Relational Memory Networks for Question Answering over Knowledge Graph
计算机科学, 2022, 49(9): 202-207. https://doi.org/10.11896/jsjkx.220300277
[2] 汤凌韬, 王迪, 张鲁飞, 刘盛云.
基于安全多方计算和差分隐私的联邦学习方案
Federated Learning Scheme Based on Secure Multi-party Computation and Differential Privacy
计算机科学, 2022, 49(9): 297-305. https://doi.org/10.11896/jsjkx.210800108
[3] 徐涌鑫, 赵俊峰, 王亚沙, 谢冰, 杨恺.
时序知识图谱表示学习
Temporal Knowledge Graph Representation Learning
计算机科学, 2022, 49(9): 162-171. https://doi.org/10.11896/jsjkx.220500204
[4] 王剑, 彭雨琦, 赵宇斐, 杨健.
基于深度学习的社交网络舆情信息抽取方法综述
Survey of Social Network Public Opinion Information Extraction Based on Deep Learning
计算机科学, 2022, 49(8): 279-293. https://doi.org/10.11896/jsjkx.220300099
[5] 郝志荣, 陈龙, 黄嘉成.
面向文本分类的类别区分式通用对抗攻击方法
Class Discriminative Universal Adversarial Attack for Text Classification
计算机科学, 2022, 49(8): 323-329. https://doi.org/10.11896/jsjkx.220200077
[6] 姜梦函, 李邵梅, 郑洪浩, 张建朋.
基于改进位置编码的谣言检测模型
Rumor Detection Model Based on Improved Position Embedding
计算机科学, 2022, 49(8): 330-335. https://doi.org/10.11896/jsjkx.210600046
[7] 孙奇, 吉根林, 张杰.
基于非局部注意力生成对抗网络的视频异常事件检测方法
Non-local Attention Based Generative Adversarial Network for Video Abnormal Event Detection
计算机科学, 2022, 49(8): 172-177. https://doi.org/10.11896/jsjkx.210600061
[8] 侯钰涛, 阿布都克力木·阿布力孜, 哈里旦木·阿布都克里木.
中文预训练模型研究进展
Advances in Chinese Pre-training Models
计算机科学, 2022, 49(7): 148-163. https://doi.org/10.11896/jsjkx.211200018
[9] 周慧, 施皓晨, 屠要峰, 黄圣君.
基于主动采样的深度鲁棒神经网络学习
Robust Deep Neural Network Learning Based on Active Sampling
计算机科学, 2022, 49(7): 164-169. https://doi.org/10.11896/jsjkx.210600044
[10] 苏丹宁, 曹桂涛, 王燕楠, 王宏, 任赫.
小样本雷达辐射源识别的深度学习方法综述
Survey of Deep Learning for Radar Emitter Identification Based on Small Sample
计算机科学, 2022, 49(7): 226-235. https://doi.org/10.11896/jsjkx.210600138
[11] 胡艳羽, 赵龙, 董祥军.
一种用于癌症分类的两阶段深度特征选择提取算法
Two-stage Deep Feature Selection Extraction Algorithm for Cancer Classification
计算机科学, 2022, 49(7): 73-78. https://doi.org/10.11896/jsjkx.210500092
[12] 程成, 降爱莲.
基于多路径特征提取的实时语义分割方法
Real-time Semantic Segmentation Method Based on Multi-path Feature Extraction
计算机科学, 2022, 49(7): 120-126. https://doi.org/10.11896/jsjkx.210500157
[13] 王君锋, 刘凡, 杨赛, 吕坦悦, 陈峙宇, 许峰.
基于多源迁移学习的大坝裂缝检测
Dam Crack Detection Based on Multi-source Transfer Learning
计算机科学, 2022, 49(6A): 319-324. https://doi.org/10.11896/jsjkx.210500124
[14] 楚玉春, 龚航, 王学芳, 刘培顺.
基于YOLOv4的目标检测知识蒸馏算法研究
Study on Knowledge Distillation of Target Detection Algorithm Based on YOLOv4
计算机科学, 2022, 49(6A): 337-344. https://doi.org/10.11896/jsjkx.210600204
[15] 周志豪, 陈磊, 伍翔, 丘东亮, 梁广升, 曾凡巧.
基于SMOTE-SDSAE-SVM的车载CAN总线入侵检测算法
SMOTE-SDSAE-SVM Based Vehicle CAN Bus Intrusion Detection Algorithm
计算机科学, 2022, 49(6A): 562-570. https://doi.org/10.11896/jsjkx.210700106
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!