计算机科学 ›› 2022, Vol. 49 ›› Issue (6A): 325-330.doi: 10.11896/jsjkx.210300117

• 图像处理&多媒体技术 • 上一篇    下一篇

基于极大极稳定区域及SVM的交通标志检测

胡聪, 何晓晖, 邵发明, 张艳武, 卢冠林, 王金康   

  1. 陆军工程大学野战工程学院 南京 210007
  • 出版日期:2022-06-10 发布日期:2022-06-08
  • 通讯作者: 何晓晖(gcb202101@163.com)
  • 作者简介:(1628403930@qq.com)
  • 基金资助:
    国家自然科学基金(61671470)

Traffic Sign Detection Based on MSERs and SVM

HU Cong, HE Xiao-hui, SHAO Fa-ming, ZHANG Yan-wu, LU Guan-lin, WANG Jin-kang   

  1. College of Field Engineering,Army Engineering University,Nanjing 210007,China
  • Online:2022-06-10 Published:2022-06-08
  • About author:HU Cong,born in 1996,postgraduate.His main research interests include computer vision and object detection.
    HE Xiao-hui,born in 1975,professor.His main research interests include mechatronics and deep learning.
  • Supported by:
    National Natural Science Foundation of China(61671470).

摘要: 交通标志检测在车辆辅助驾驶系统、自动驾驶等领域是一个重要研究内容,它能即时协助驾驶员或自动驾驶系统有效地检测和识别交通标志。基于该需求,提出了一种基于真实交通场景的交通标志检测方法。首先,选择合适的数据库,将数据库中的道路场景图像转换为灰度图像,并对灰度图像进行简化Gabor滤波处理,强化交通标志的边缘信息。其次,利用区域推荐算法MSERs对Gabor滤波后的特征图进行处理,形成交通标志的推荐区域。最后,通过提取HOG特征,使用SVM进行分类。通过实验,分析了简化Gabor滤波器的特征提取性能、SG-MSERs区域推荐及筛选的性能,并且得到了算法的大类分类准确率以及所需要的处理时间。实验结果表明,所提算法在GTSDB和CSTD数据集上都获得了较好的检测性能,基本满足实时处理的需求。

关键词: HOG, MSERs, SVM, 简化Gabor滤波器, 交通标志检测

Abstract: Traffic sign detection is an important research content in the field of vehicle assistant driving system and automatic driving.It can instantly assist drivers or automatic driving systems to detect and identify traffic signs effectively.Based on this requirement,a traffic sign detection method based on real traffic scene is proposed.Firstly,the appropriate database is selected to convert the road scene image in the database into gray-scale image,and the gray-scale image is processed by simplified Gabor filtering to enhance the edge information of traffic signs.Secondly,the region recommendation algorithm MSERs is used to process the Gabor filtered feature map to form the proposal region of traffic signs.Finally,by extracting hog features,SVM is used for classification.Through experiments,the feature extraction performance of simplified Gabor filter,the performance of SG-MSERs region recommendation and filtering are analyzed,and the classification accuracy and processing time of the algorithm are obtained.The results show that the algorithm achieves good detection performance on both GTSDB and CSTD datasets,and basically meets the needs of real-time processing.

Key words: HOG, MSERs, Simplified Gabor filters, SVM, Traffic sign detection

中图分类号: 

  • TP301.6
[1] ZHANG C,LIU G,ZHU X,et al.Face Detection Algorithm Based on Improved AdaBoost and New Haar Features[C]//2019 12th International Congress on Image and Signal Proces-sing,BioMedical Engineering and Informatics(CISP-BMEI).IEEE,2020.
[2] YAN H,LIU Y,WANG X,et al.A Face Detection Method Based on Skin Color Features and AdaBoost Algorithm[J].Journal of Physics:Conference Series,2021,1748(4):042015(6pp).
[3] MILOU D,BESNASS I,NABI L.Face detection based on evolutionary Haar filter[J].Pattern Analysis and Applications,2020,23(1):309-330.
[4] ALABDULLAH F,IBRAHIM A A.Iris Detection and Recognition by Image Segmentation Using K-Means Algorithm and Artificial Neural Network[C]//2020 4th International Symposium on Multidisciplinary Studies and Innovative Technologies(ISMSIT).2020.
[5] REN,YUN,ZHU,et al.Small Object Detection in Optical Remote Sensing Images via Modified Faster R-CNN[J].Applied Sciences,2018.
[6] HANDOKO H,PRATAMA J H,YOHANES B W.Traffic Sign Detection Optimization Using Color and Shape Segmentation As Pre-processing System[J].Telecommunication Computing Electronics and Control,2021,19(1).
[7] YIN S,XU Y.Fast Traffic Sign Detection Using Color-Specific Quaternion Gabor Filters[M].2020.
[8] WALI S B,KER J,SALAM M A.A Unified Color and Shape based Algorithm for Traffic Sign Detection System[J].2021.
[9] ARDIANTO S,CHEN C J,HANG H M.Real-time traffic sign recognition using color segmentation and SVM[C]//2017 International Conference on Systems,Signals and Image Processing(IWSSIP).IEEE,2017.
[10] SHADEED W G,ABU-AL-NADI D I,MISMAR M J.Roadtraffic sign detection in color images[C]//Proceedings of the 2003 10th IEEE International Conference on Electronics,Circuits and Systems 2003(ICECS 2003).IEEE,2004.
[11] MALIK R,KHURSHID J,AHMAD S N.Road Sign Detection and Recognition using Colour Segmentation,Shape Analysis and Template Matching[C]//International Conference on Machine Learning & Cybernetics.IEEE,2007.
[12] NURAZLIN M Y,BURIE J C,LOONIS P B P.Road sign detection and recognition[C]//Proceedings of 1st International Conference on Engineering Technology,2008.
[13] LOY G,BARNES N.Fast shape-based road sign detection for a driver assistance system[C]//IEEE/RSJ International Confe-rence on Intelligent Robots & Systems.IEEE,2004.
[14] RIVEIRO B,DIAZ-VILARINO L,CONDE-CARNERO B,et al.Automatic Segmentation and Shape-Based Classification of Retro-Reflective Traffic Signs from Mobile LiDAR Data[J].IEEE Journal of Selected Topics in Applied Earth Observations &Remote Sensing,2017,9(1):295-303.
[15] SUGIHARTO A,HARJOKO A,SUHARTO S.Indonesiantraffic sign detection based on Haar-PHOG features and SVM classification[J].International Journal on Smart Sensing and Intelligent Systems,2020,13(1):1-15.
[16] FAN B B,YANG H.Multi-scale traffic sign detection modelwith attention[J].Proceedings of the Institution of Mechanical Engineers Part D Journal of Automobile Engineering,2020:095440702095005.
[17] STALLKAMP J,SCHLIPSING M,SALMEN J,et al.The German Traffic Sign Recognition Benchmark:A multi-class classification competition[C]//International Joint Conference on Neural Networks.IEEE,2011.
[18] DAN C,MEIER U,MASCI J,et al.A committee of neural networks for traffic sign classification[J].IEEE,2011.
[19] ZHANG J,HUANG M,JIN X,et al.A Real-Time ChineseTraffic Sign Detection Algorithm Based on Modified YOLOv2[J].Algorithms,2017,10(4):127.
[20] LIU S.A Traffic Sign Image Recognition and Classification Approach Based on Convolutional Neural Network[C]//2019 11th International Conference on Measuring Technology and Mechatronics Automation(ICMTMA).IEEE,2019.
[21] YI Y,LUO H,XU H,et al.Towards Real-Time Traffic Sign Detection and Classification[J].IEEE Transactions on Intelligent Transportation Systems,2016,17(7):2022-2031.
[22] KHAYEAT A,ABDULMUNEM A A,AL-SHAMMARI R,et al.Traffic Sign Detection and Classification based on Combination of MSER Features and Multi-language OCR[J].Webology,2020,17(2):394-403.
[23] RAVIKIRAN M.Traffic Sign Recognition-How well does Single Shot Multibox Detector sum up? A Quantitative Study[C]//48th Annual IEEE AIPR 2019:Ubiquitous Imaging.IEEE,2018.
[24] SHABARINATH B B,MURALIDHAR P.Convolutional Neural Network based Traffic-Sign Classifier Optimized for Edge Inference[C]//2020 IEEE Region 10 Conference(TENCON).IEEE,2020.
[25] WEI L,LU R,LIU X.Traffic sign detection and recognition via transfer learning[C]//2018 Chinese Control And Decision Conference(CCDC).2018.
[26] ZHANG L X,ZHANG S S,ZHANG M Y.Detection and recog-nition on traffic sign in complex scene[C]//6th International Conference on Information Science and Control Engineering(ICISCE).2019.
[1] 刘卫明, 安冉, 毛伊敏.
基于聚类和WOA的并行支持向量机算法
Parallel Support Vector Machine Algorithm Based on Clustering and WOA
计算机科学, 2022, 49(7): 64-72. https://doi.org/10.11896/jsjkx.210500040
[2] 周志豪, 陈磊, 伍翔, 丘东亮, 梁广升, 曾凡巧.
基于SMOTE-SDSAE-SVM的车载CAN总线入侵检测算法
SMOTE-SDSAE-SVM Based Vehicle CAN Bus Intrusion Detection Algorithm
计算机科学, 2022, 49(6A): 562-570. https://doi.org/10.11896/jsjkx.210700106
[3] 李梦荷, 许宏吉, 石磊鑫, 赵文杰, 李娟.
基于骨骼关键点检测的多人行为识别
Multi-person Activity Recognition Based on Bone Keypoints Detection
计算机科学, 2021, 48(4): 138-143. https://doi.org/10.11896/jsjkx.200300042
[4] 宋一言, 唐东林, 吴续龙, 周立, 秦北轩.
改进穿线法与HOG+SVM结合的数码管图像读数研究
Study on Digital Tube Image Reading Combining Improved Threading Method with HOG+SVM Method
计算机科学, 2021, 48(11A): 396-399. https://doi.org/10.11896/jsjkx.210100123
[5] 谭建豪, 殷旺, 刘力铭, 王耀南.
采用多相关滤波策略的鲁棒长时自适应目标跟踪
Robust Long-term Adaptive Object Tracking Based onMulti-correlation Filtering Strategy
计算机科学, 2020, 47(12): 169-176. https://doi.org/10.11896/jsjkx.191000021
[6] 王立志,慕晓冬,刘宏岚.
采用改进粒子群优化的SVM方法实现中文文本情感分类
Using SVM Method Optimized by Improved Particle Swarm Optimization to Analyze Emotion of Chinese Text
计算机科学, 2020, 47(1): 231-236. https://doi.org/10.11896/jsjkx.181102130
[7] 韩旭, 谌海云, 王溢, 许瑾.
基于SPCA和HOG的单样本人脸识别算法
Face Recognition Using SPCA and HOG with Single Training Image Per Person
计算机科学, 2019, 46(6A): 274-278.
[8] 吴璠, 李寿山, 周国栋.
基于LSTM和多特征组合的电影评论专业程度分类
Movie Review Professionalism Classification Using LSTM and Features Fusion
计算机科学, 2019, 46(6A): 74-79.
[9] 李愚, 柴国钟, 卢纯福, 唐智川.
基于增量自适应学习的在线肌电手势识别
On-line sEMG Hand Gesture Recognition Based on Incremental Adaptive Learning
计算机科学, 2019, 46(4): 274-279. https://doi.org/10.11896/j.issn.1002-137X.2019.04.043
[10] 张加惠, 陈致远, 赵峰, 安志勇, 谢青松.
基于深层融合的股票文本主题识别
Stock Text Theme Recognition Based on Deep Fusion
计算机科学, 2019, 46(11A): 122-126.
[11] 严娇娇,种兰祥,李婷.
一种人手背静脉特征识别方法
Algorithm for Human Dorsal Vein FeatureIdentification
计算机科学, 2018, 45(6A): 206-209.
[12] 周燕萍,业巧林.
基于L1-范数距离的最小二乘对支持向量机
L1-norm Distance Based Least Squares Twin Support Vector Machine
计算机科学, 2018, 45(4): 100-105. https://doi.org/10.11896/j.issn.1002-137X.2018.04.015
[13] 赵澄, 陈君新, 姚明海.
基于SVM分类器的XSS攻击检测技术
XSS Attack Detection Technology Based on SVM Classifier
计算机科学, 2018, 45(11A): 356-360.
[14] 邹冲,蔡敦波,刘莹,赵娜,赵彤洲.
组合SVM分类器在行人检测中的研究
Research of Combination SVM Classifier in Pedestrian Detection
计算机科学, 2017, 44(Z6): 188-191. https://doi.org/10.11896/j.issn.1002-137X.2017.6A.043
[15] 高飞,丰敏强,汪敏倩,卢书芳,肖刚.
基于热点区域定义的人数统计方法研究
Research on People Counting Based on Hot Area
计算机科学, 2017, 44(Z6): 173-178. https://doi.org/10.11896/j.issn.1002-137X.2017.6A.040
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!