计算机科学 ›› 2022, Vol. 49 ›› Issue (6A): 363-369.doi: 10.11896/jsjkx.210500044

• 图像处理&多媒体技术 • 上一篇    下一篇

改进注意力机制的多叉树网络多作物早期病害识别方法

高荣华1,2, 白强1,2,3, 王荣1,2,3, 吴华瑞1,2, 孙想1,2   

  1. 1 北京市农林科学院信息技术研究中心 北京 100097
    2 国家农业信息化工程技术研究中心 北京 100097
    3 西北农林科技大学信息工程学院 陕西 咸阳 712100
  • 出版日期:2022-06-10 发布日期:2022-06-08
  • 通讯作者: 白强(eooz@nwsuaf.edu.cn)
  • 作者简介:(gaorh@nercita.org.cn)
  • 基金资助:
    国家自然科学基金面上项目(61771058);北京市科技计划课题(Z191100004019007)

Multi-tree Network Multi-crop Early Disease Recognition Method Based on Improved Attention Mechanism

GAO Rong-hua1,2, BAI Qiang1,2,3, WANG Rong1,2,3, WU Hua-rui1,2, SUN Xiang1,2   

  1. 1 Research Center of Information Technology,Beijing Academy of Agriculture and Forestry Sciences,Beijing 100097,China
    2 National Engineering Research Center for Information Technology in Agriculture,Beijing 100097,China
    3 College of Information Engineering,Northwest A&F University, Xianyang,Shaanxi 712100,China
  • Online:2022-06-10 Published:2022-06-08
  • About author:GAO Rong-hua,born in 1977,Ph.D candidate,associate professor,is a member of China Computer Federation.Her main research interests include big data analysis and intelligent decision-ma-king.
    BAI Qiang,born in 1997,postgraduate.His main research interests include computer vision and object detection.
  • Supported by:
    National Natural Science Foundation of China(61771058) and Beijing Municipal Science and Technology Project(Z191100004019007).

摘要: 在作物染病早期,及时获取作物病害信息,判别染病原因和严重程度,从而对症下药,能够及时防治病害扩散造成的作物产量下降。针对传统深度学习网络对作物早期病害识别方法准确率低的问题,基于病害特征图像各通道包含的信息量不同,及多层感知机(Multilayer Perceptron,MLP)能逼近任意函数的特点,提出了一种改进注意力机制的多叉树网络作物早期病害识别方法,将注意力机制融合残差网络对病害特征重校准(SMLP_Res);同时结合多叉树结构对具有较高特征提取能力的SMLP_ResNet(Squeeze-Multi-Layer Perceptron ResNet)网络进行扩展,构建的多叉树SMLP_ResNet网络模型可以简化多作物早期病害识别任务,有效提取早期病害特征。实验中使用Plant Village和AI Challenger 2018两种数据集对18层的ResNet,SE_ResNet,SMLP_ResNet这3种网络模型,以及同等结构的多叉树结构模型进行训练,验证了SMLP_Res和多叉树结构对作物病害识别模型的影响。通过实验分析得到18层的ResNet,SE_ResNet,SMLP_ResNet这3种网络模型在病害特征较明显的Plant Village数据集上病害识别的准确率均达到99%以上,但在早期病害数据集AI Challenger 2018上的准确率均不超过87%,SMLP_ResNet因加入了SMLP_Res模块,故对作物病害数据特征提取较为充分,检测结果较好。多叉树结构的3种早期病害识别模型,在AI Challenger 2018数据集上识别准确率均有明显提升,多叉树SMLP_ResNe较其余两种模型具有较好的性能,其中樱桃早期病害识别准确率为99.13%,检测结果最佳。文中提出的多叉树SMLP_ResNet作物早期病害识别模型,能够简化识别任务,抑制噪声传输,达到了较高的准确率。

关键词: 残差网络, 多叉树, 损失函数, 早期病害识别, 注意力机制

Abstract: In the early stage of crop infection,timely acquisition of crop disease information,identification of the cause and severity of disease,and the right remedy,can prevent and control the decline in crop yield caused by the spread of the disease in time.In view of the low accuracy of traditional deep learning network for early crop disease recognition,based on the difference in information contained in each channel of the disease feature image and the characteristics of multilayer prceptron(MLP) that can approximate any function,a multi-tree network crop early disease identification method based on improved attention mechanism is proposed.It combines the attention mechanism with residual network to recalibrate disease features(SMLP_Res).At the same time,combined with the multi-tree structure,the SMLP_ResNet network with high feature extraction ability is expanded,and the constructed multi-tree SMLP_ResNet network model can simplify the task of early disease recognition of multiple crops and effectively extract early disease features.In experiments,Plant Village and AI Challenger 2018 are used to train18-layer model ResNet,SE_ResNet,SMLP_ResNet,as well as the multi-tree structure model with the same structure,to verify the influence of SMLP_Res and multi-tree structure on crop disease recognition models.Experimental analysis shows that,the disease recognition accuracy of the three network models on Plant Village dataset with obvious disease features is more than 99%,but their accuracy on the early disease data set AI Challenger 2018 is not more than 87%.SMLP_ResNet has sufficient feature extraction of crop disease data due to the addition of SMLP_Res module,and the detection results are better.The three early disease recognition models of the multi-tree structure significantly improves the recognition accuracy on AI Challenger 2018 dataset.The multi-tree SMLP_ResNe has better performance than the other two models,and the early disease recognition accuracy of cherry is 99.13%,the detection result is the best.The proposed multi-tree SMLP_ResNet crop early disease recognition model can simplify the recognition task,suppress noise transmission,and achieve a higher accuracy rate.

Key words: Attention mechanism, Early disease recognition, Loss function, Multi-tree, Residual network

中图分类号: 

  • S431
[1] ChEN X X,LIU Z Y,LV M Q,et al.Diagnosis and Monitoring of Sclerotinia Stem Rot of Oilseed Rape Using Thermal Infrared Imaging[J].Spectroscopy and Spectral Analysis,2019,39(3):730-737.
[2] KANG L,YUAN J Q,GAO R,et al.Early Detection and Identification of Rice Blast Based on Hyperspectral Image[J].Spectroscopy and Spectral Analysis,2021,41(3):898-902.
[3] ZHANG Y L,ZHOU Y J.Review of clustering algorithms[J].Journal of Computer Applications,2019,39(7):1869-1882.
[4] BIAN Y C,SIX L.Application of new clustering algorithm based on MapReduce in agriculture——A case study on image target recognition of Panonychus citri McGregor[J].Journal of Chinese Agricultural Mechanization,2016,37(9):166-171.
[5] WEI L R,Y J,LI Z B,et al.Multi-classification Detection Me-thod of Plant Leaf DiseaseBased on Kernel Function SVM[J].Transactions of the Chinese Society for Agricultural Machinery,2017,48(S1):166-171.
[6] JOHANNES A,PICON A,ALVAREZ-GILA A,et al.Auto-matic plant disease diagnosis using mobile capture devices,applied on a wheat use case[J].Computers and Electronics in Agriculture,2017,138:200-209.
[7] WANG Z,WANG X,WANG G.Learning fine-grained features via a CNN tree for large-scale classification[J].Neurocompu-ting,2018,275:1231-1240.
[8] REDMON J,DIVVALA S,GIRSHICKR,et al.You only lookonce:Unified,real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:779-788.
[9] REDDY S,VARMA G,DAVULURI R L.Optimized convolutional neural network model for plant species identification from leaf images using computer vision[J/OL].International Journal of Speech Technology,2021:1-28.https://doi.org/10.1007/s10772-021-09843-x.
[10] SLADOJEVIC S,ARSENOVIC M,ANDERLA A,et al.DeepNeural Networks Based Recognition of Plant Diseases by Leaf Image Classification[J]. Comput. Intell. Neurosci.,2016.doi:10.1155/2016/3289801.
[11] MOHANTY S P,HUGHES D P,SALATHE M.Using Deep Learning for Image-Based Plant Disease Detection[J/OL].Frontiers in Plant Science,2016,7.https://doi.org/10.3389/fpls.2016.01419.
[12] KRIZHEVSKY A,SUTSKEVER I,HINTON G E.Imagenetclassification with deep convolutional neural networks[C]//Advances in Neural Information Processing Systems.2012:1097-1105.
[13] SIMONYAN K,ZISSERMANA.Very deep convolutional net-works for large-scale image recognition[J].arXiv:1409.1556,2014.
[14] HE K,ZHANG X,REN S,et al.Deep residual learning forimage recognition[C]//Computer Vision and Pattern Recognition(CVPR).IEEE,2016:770-778.
[15] SZEGEDY C,LIU W,JIA Y,et al.Going deeper with convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2015:1-9.
[16] MGSELVARA J,VERGARA A,RUIZ H,et al.AI-powered banana diseases and pest detection [J/OL].Plant Methods,2019,15(1).https://doi.org/10.1186/s13007-019-0475-z.
[17] AGARWAL M,GUPTA S K,BISWAS K K.Development ofEfficient CNN model for Tomato crop disease identification-Science Direct[J].Sustainable Computing:Informatics and Systems,2020,28(1).
[18] CHEN Q,LIU X,DONG C,et al.Deep Convolutional Network for Citrus Leaf Diseases Recognition[C]//2019 IEEE Intl. Conf. on Parallel & Distributed Processing with Applications,Big Data & Cloud Computing,Sustainable Computing & Communications,Social Computing & Networking(ISPA/BDCloud/SocialCom/SustainCom).IEEE,2019.
[19] An open access repository of images on plant health to enable the development of mobile disease diagnostics[J].arXiv.1511.08060,2015.
[20] HU J,SHEN L,SUN G.Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:7132-7141.
[21] LIU Y,LIU Y,CHEN C,et al.Remote-Sensing Image Retrieval with Tree-Triplet-Classification Networks[J].Neurocomputing,2020,405:48-61.
[22] SINGH N,SINGH P.A novel Bagged Nave Bayes-Decision Tree approach for multi-class classification problems[J].Journal of Intelligent and Fuzzy Systems,2019,36(3):2261-2271.
[23] AHMED K,SHAHIDI T R,ALAM S,et al.Rice Leaf Disease Detection Using Machine Learning Techniques[C]//2019 International Conference on Sustainable Technologies for Industry 4.0(STI).2019.
[24] HABIB G,QURESHI S.Optimization and Acceleration of Convolutional neural networks:A Survey [J/OL].Journal of King Saud University-Computer and Information Sciences,2020.https://doi.org/10.1016/j.jksuci.2020.10.004.
[25] IOFFE S,SZEGEDY C.Batch normalization:Accelerating deep network training by reducing internal covariate shift[C]//International Conference on International Conference on Machine Learning.2015.
[1] 饶志双, 贾真, 张凡, 李天瑞.
基于Key-Value关联记忆网络的知识图谱问答方法
Key-Value Relational Memory Networks for Question Answering over Knowledge Graph
计算机科学, 2022, 49(9): 202-207. https://doi.org/10.11896/jsjkx.220300277
[2] 周芳泉, 成卫青.
基于全局增强图神经网络的序列推荐
Sequence Recommendation Based on Global Enhanced Graph Neural Network
计算机科学, 2022, 49(9): 55-63. https://doi.org/10.11896/jsjkx.210700085
[3] 戴禹, 许林峰.
基于文本行匹配的跨图文本阅读方法
Cross-image Text Reading Method Based on Text Line Matching
计算机科学, 2022, 49(9): 139-145. https://doi.org/10.11896/jsjkx.220600032
[4] 周乐员, 张剑华, 袁甜甜, 陈胜勇.
多层注意力机制融合的序列到序列中国连续手语识别和翻译
Sequence-to-Sequence Chinese Continuous Sign Language Recognition and Translation with Multi- layer Attention Mechanism Fusion
计算机科学, 2022, 49(9): 155-161. https://doi.org/10.11896/jsjkx.210800026
[5] 熊丽琴, 曹雷, 赖俊, 陈希亮.
基于值分解的多智能体深度强化学习综述
Overview of Multi-agent Deep Reinforcement Learning Based on Value Factorization
计算机科学, 2022, 49(9): 172-182. https://doi.org/10.11896/jsjkx.210800112
[6] 王馨彤, 王璇, 孙知信.
基于多尺度记忆残差网络的网络流量异常检测模型
Network Traffic Anomaly Detection Method Based on Multi-scale Memory Residual Network
计算机科学, 2022, 49(8): 314-322. https://doi.org/10.11896/jsjkx.220200011
[7] 姜梦函, 李邵梅, 郑洪浩, 张建朋.
基于改进位置编码的谣言检测模型
Rumor Detection Model Based on Improved Position Embedding
计算机科学, 2022, 49(8): 330-335. https://doi.org/10.11896/jsjkx.210600046
[8] 朱承璋, 黄嘉儿, 肖亚龙, 王晗, 邹北骥.
基于注意力机制的医学影像深度哈希检索算法
Deep Hash Retrieval Algorithm for Medical Images Based on Attention Mechanism
计算机科学, 2022, 49(8): 113-119. https://doi.org/10.11896/jsjkx.210700153
[9] 孙奇, 吉根林, 张杰.
基于非局部注意力生成对抗网络的视频异常事件检测方法
Non-local Attention Based Generative Adversarial Network for Video Abnormal Event Detection
计算机科学, 2022, 49(8): 172-177. https://doi.org/10.11896/jsjkx.210600061
[10] 闫佳丹, 贾彩燕.
基于双图神经网络信息融合的文本分类方法
Text Classification Method Based on Information Fusion of Dual-graph Neural Network
计算机科学, 2022, 49(8): 230-236. https://doi.org/10.11896/jsjkx.210600042
[11] 汪鸣, 彭舰, 黄飞虎.
基于多时间尺度时空图网络的交通流量预测模型
Multi-time Scale Spatial-Temporal Graph Neural Network for Traffic Flow Prediction
计算机科学, 2022, 49(8): 40-48. https://doi.org/10.11896/jsjkx.220100188
[12] 金方焱, 王秀利.
融合RACNN和BiLSTM的金融领域事件隐式因果关系抽取
Implicit Causality Extraction of Financial Events Integrating RACNN and BiLSTM
计算机科学, 2022, 49(7): 179-186. https://doi.org/10.11896/jsjkx.210500190
[13] 熊罗庚, 郑尚, 邹海涛, 于化龙, 高尚.
融合双向门控循环单元和注意力机制的软件自承认技术债识别方法
Software Self-admitted Technical Debt Identification with Bidirectional Gate Recurrent Unit and Attention Mechanism
计算机科学, 2022, 49(7): 212-219. https://doi.org/10.11896/jsjkx.210500075
[14] 彭双, 伍江江, 陈浩, 杜春, 李军.
基于注意力神经网络的对地观测卫星星上自主任务规划方法
Satellite Onboard Observation Task Planning Based on Attention Neural Network
计算机科学, 2022, 49(7): 242-247. https://doi.org/10.11896/jsjkx.210500093
[15] 张颖涛, 张杰, 张睿, 张文强.
全局信息引导的真实图像风格迁移
Photorealistic Style Transfer Guided by Global Information
计算机科学, 2022, 49(7): 100-105. https://doi.org/10.11896/jsjkx.210600036
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!