计算机科学 ›› 2022, Vol. 49 ›› Issue (12): 53-58.doi: 10.11896/jsjkx.220700136

• 联邦学习* 上一篇    下一篇

边缘场景下动态权重的联邦学习优化方法

程帆, 王瑞锦, 张凤荔   

  1. 电子科技大学信息与软件工程学院 成都610054
  • 收稿日期:2022-07-15 修回日期:2022-09-08 发布日期:2022-12-14
  • 通讯作者: 王瑞锦(ruijinwang@uestc.edu.cn)
  • 作者简介:(fancheng@std.uestc.edu.cn)
  • 基金资助:
    国家自然科学基金(62271128);四川省科技计划重点研发项目(2022ZDZX0004,23ZDYF0706,23ZDYF0085,2022YFG0212,2021YFS0391,2021YFG0027,2020YFG0475,2019YJ0543)

Federated Learning Optimization Method for Dynamic Weights in Edge Scenarios

CHENG Fan, WANG Rui-jin, ZHANG Feng-li   

  1. School of Information and Software Engineering,University of Electronic Science and Technology of China,Chengdu 610054,China
  • Received:2022-07-15 Revised:2022-09-08 Published:2022-12-14
  • About author:CHENG Fan,born in 1999,postgra-duate,is a member of China Computer Federation.His main research interests include federated learning and edge computing.WANG Rui-jin,born in 1980,Ph.D,associate professor,is a member of China Computer Federation.His main research interests include edge computing,blockchain,artificial intelligence and information security.
  • Supported by:
    National Natural Science Foundation of China(62271128) and Key R & D Projects of Sichuan Science and Technology Program(2022ZDZX0004,23ZDYF0706,23ZDYF0085,2022YFG0212,2021YFS0391,2021YFG0027,2020YFG0475,2019YJ0543).

摘要: 边缘计算(Edge Computing)作为一种新的计算范式,在网络边缘提供计算服务,相比传统的云计算模式,它具有高可信、低延迟等特点,在各行各业中有着广阔的应用前景,但在隐私保护和数据处理上仍存在一些问题。而联邦学习作为一种分布式的机器学习技术,能很好地解决边缘计算场景下数据分布不一致和数据隐私问题,但仍面临设备异构、数据异质及通信方面的挑战,如模型偏移、收敛效果差、部分设备计算结果丢失等问题。为解决上述问题,提出动态权重的联邦学习优化算法(FedDw)。该算法关注设备的服务质量,减少训练速度不一致导致部分设备参与带来的异构性影响,并根据服务质量确定在最终模型聚合时的占比,从而确保聚合的结果在复杂的真实情况下更具有鲁棒性。在10个地区气象站的真实数据集上与FedProx和Scaffold这两种典型的联邦学习算法进行了对比,实验结果表明FedDw算法具有更好的综合性能。

关键词: 联邦学习, 边缘计算, 风能预测, 设备异构, 动态权重

Abstract: As a new computing paradigm,edge computing provides computing and storage services at the edge of the network compared to traditional cloud computing model.It has the characteristics of high reliability and low latency.However,there are still some problems in privacy protection and data processing.As a distributed machine learning model,federated learning can well solve the problems of inconsistent data distribution and data privacy in edge computing scenarios,but it still faces challenges in equipment heterogeneity,data heterogeneity and communication,such as model offset,the convergence effect is poor,and the calculation results of some devices are lost.In order to solve the above problems,a federated learning optimization algorithm with dynamic weights(FedDw) is proposed,which focuses on the service quality of the equipment,reduces the heterogeneous impact caused by the participation of some equipments due to inconsistent training speed,and determines the proportion in the final mo-del aggregation according to the service quality,so as to ensure that the aggregation results are more robust in complex real situations.Through experiments,the two excellent federated learning algorithms,FedProx and Scaffold,are compared on the real data sets of 10 regional weather stations.The results show that the FedDw algorithm has better comprehensive performance.

Key words: Federal learning, Edge computing, Wind energy forecasting, Equipment heterogeneity, Dynamic weights

中图分类号: 

  • TP391
[1]ZHOU Y Z,ZHANG D.Near-ENF cloud computing:opportunities and challenges in the post-cloud computing Era[J].Chinese Journal of Computers,2019,42(4):677-700.
[2]CUI Y,SONG J,MIAO C C,et al.Mobile cloud computing research progress and trends[J].Chinese Journal of Computers,2017,40(2):273-295.
[3]ARRIETA A B,DÍAZ-RODRÍGUEZ N,DEL SER J,et al.ExplainableArtificial Intelligence (XAI):Concepts,taxonomies,opportunities and challenges toward responsible AI[J].Information Fusion,2020,58:82-115.
[4]SHI W S,SUN H,CAO J,et al.Edge computing—an emerging computing model for the internet of everything era[J].Journal of Computer Research and Development,2017,54 (5):907-924.
[5]WANG R,PEI X,ZHU J,et al.Multivariable time series forecasting using model fusion[J].Information Sciences,2022,585:262-274.
[6]WANG R J,LAI J S,ZHANG Z Y,et al.Privacy-PreservingFederated Learning for Internet of Medical Things under Edge Computing[J/OL].IEEE Journal of Biomedical and Health Informatics,2022.https://ieeexplore.ieee.org/document/9729996.
[7]KAIROUZ P,MCMAHAN H B,AVENT B,et al.Advancesand open problems in federated learning[J].Foundations and Trends® in Machine Learning,2021,14(1/2):1-210.
[8]YANG Q.Federated learning and artificial intelligence[J].Software and Integrated Circuit,2019,5(11):961-965.
[9]KHAN L U,SAAD W,HAN Z,et al.Federated learning for internet of things:Recent advances,taxonomy,and open challenges[J].IEEE Communications Surveys & Tutorials,2021,23(3):1759-1799.
[10]KONEČNÝ J,MCMAHAN H B,YU F X,et al.Federated learning:Strategies for improving communication efficiency[J].arXiv:1610.05492,2016.
[11]ZHANG Y L,CHEN Y X,TIAN H,et al.Survey on Federated Learning Application on Scenarios of Edge Computing[J].Journal of Chinese Computer Systems,2021,42(12):2645-2653.
[12]ZHAO Y,LI M,LAI L,et al.Federated learning with non-iid data[J].arXiv:1806.00582,2018.
[13]MCMAHAN B,MOORE E,RAMAGE D,et al.Communica-tion efficient learning of deep networks from decentralized data:Artificial intelligence and statistics[C]//PMLR.2017.
[14]LI T,SAHU A K,ZAHEER M,et al.Federated optimization in heterogeneous networks[C]//Proceedings of Machine Learning and Systems.2020:429-450.
[15]WANG J,LIU Q,LIANG H,et al.Tackling the objective inconsistency problem in heterogeneous federated optimization[J].Advances in Neural Information Processing Systems,2020,33:7611-7623.
[16]KARIMIREDDY S P,KALE S,MOHRI M,et al.Scaffold:Stochastic controlled averaging for federated learning:International Conference on Machine Learning[C]//PMLR.2020.
[17]PENG X,HUANG Z,ZHU Y,et al.Federated adversarial domain adaptation[J].arXiv:1911.02054,2019.
[18]SERRA J,SURIS D,MIRON M,et al.Overcoming catastrophic forgetting with hard attention to the task:International Confe-rence on Machine Learning[C]//PMLR.2018.
[19]QU L,ZHOU Y,LIANG P P,et al.Rethinking ArchitectureDesign for Tackling Data Heterogeneity in Federated Learning[J].arXiv:2106.06047,2021.
[20]ZHANG M,SAPRA K,FIDLER S,et al.Personalized federated learning with first order model optimization[J].arXiv:2012.08565,2020.
[21]LI L,DUAN M,LIU D,et al.FedSAE:A novel self-adaptive federated learning framework in heterogeneous systems:2021 International Joint Conference on Neural Networks(IJCNN)[C]//IEEE.2021.
[22]REISIZADEH A,TAHERI H,MOKHTARI A,et al.Robust and communication-efficient collaborative learning[C]//Advances in Neural Information Processing Systems.2019.
[1] 鲁晨阳, 邓苏, 马武彬, 吴亚辉, 周浩浩.
基于分层抽样优化的面向异构客户端的联邦学习
Federated Learning Based on Stratified Sampling Optimization for Heterogeneous Clients
计算机科学, 2022, 49(9): 183-193. https://doi.org/10.11896/jsjkx.220500263
[2] 孙慧婷, 范艳芳, 马孟晓, 陈若愚, 蔡英.
VEC中基于动态定价的车辆协同计算卸载方案
Dynamic Pricing-based Vehicle Collaborative Computation Offloading Scheme in VEC
计算机科学, 2022, 49(9): 242-248. https://doi.org/10.11896/jsjkx.210700166
[3] 汤凌韬, 王迪, 张鲁飞, 刘盛云.
基于安全多方计算和差分隐私的联邦学习方案
Federated Learning Scheme Based on Secure Multi-party Computation and Differential Privacy
计算机科学, 2022, 49(9): 297-305. https://doi.org/10.11896/jsjkx.210800108
[4] 于滨, 李学华, 潘春雨, 李娜.
基于深度强化学习的边云协同资源分配算法
Edge-Cloud Collaborative Resource Allocation Algorithm Based on Deep Reinforcement Learning
计算机科学, 2022, 49(7): 248-253. https://doi.org/10.11896/jsjkx.210400219
[5] 李梦菲, 毛莺池, 屠子健, 王瑄, 徐淑芳.
基于深度确定性策略梯度的服务器可靠性任务卸载策略
Server-reliability Task Offloading Strategy Based on Deep Deterministic Policy Gradient
计算机科学, 2022, 49(7): 271-279. https://doi.org/10.11896/jsjkx.210600040
[6] 陈明鑫, 张钧波, 李天瑞.
联邦学习攻防研究综述
Survey on Attacks and Defenses in Federated Learning
计算机科学, 2022, 49(7): 310-323. https://doi.org/10.11896/jsjkx.211000079
[7] 鲁晨阳, 邓苏, 马武彬, 吴亚辉, 周浩浩.
基于DBSCAN聚类的集群联邦学习方法
Clustered Federated Learning Methods Based on DBSCAN Clustering
计算机科学, 2022, 49(6A): 232-237. https://doi.org/10.11896/jsjkx.211100059
[8] 袁昊男, 王瑞锦, 郑博文, 吴邦彦.
基于Fabric的电子病历跨链可信共享系统设计与实现
Design and Implementation of Cross-chain Trusted EMR Sharing System Based on Fabric
计算机科学, 2022, 49(6A): 490-495. https://doi.org/10.11896/jsjkx.210500063
[9] 闫萌, 林英, 聂志深, 曹一凡, 皮欢, 张兰.
一种提高联邦学习模型鲁棒性的训练方法
Training Method to Improve Robustness of Federated Learning
计算机科学, 2022, 49(6A): 496-501. https://doi.org/10.11896/jsjkx.210400298
[10] 方韬, 杨旸, 陈佳馨.
D2D辅助移动边缘计算下的卸载策略优化
Optimization of Offloading Decisions in D2D-assisted MEC Networks
计算机科学, 2022, 49(6A): 601-605. https://doi.org/10.11896/jsjkx.210200114
[11] 刘漳辉, 郑鸿强, 张建山, 陈哲毅.
多无人机使能移动边缘计算系统中的计算卸载与部署优化
Computation Offloading and Deployment Optimization in Multi-UAV-Enabled Mobile Edge Computing Systems
计算机科学, 2022, 49(6A): 619-627. https://doi.org/10.11896/jsjkx.210600165
[12] 谢万城, 李斌, 代玥玥.
空中智能反射面辅助边缘计算中基于PPO的任务卸载方案
PPO Based Task Offloading Scheme in Aerial Reconfigurable Intelligent Surface-assisted Edge Computing
计算机科学, 2022, 49(6): 3-11. https://doi.org/10.11896/jsjkx.220100249
[13] 周天清, 岳亚莉.
超密集物联网络中多任务多步计算卸载算法研究
Multi-Task and Multi-Step Computation Offloading in Ultra-dense IoT Networks
计算机科学, 2022, 49(6): 12-18. https://doi.org/10.11896/jsjkx.211200147
[14] 彭冬阳, 王睿, 胡谷雨, 祖家琛, 王田丰.
视频缓存策略中QoE和能量效率的公平联合优化
Fair Joint Optimization of QoE and Energy Efficiency in Caching Strategy for Videos
计算机科学, 2022, 49(4): 312-320. https://doi.org/10.11896/jsjkx.210800027
[15] 杜辉, 李卓, 陈昕.
基于在线双边拍卖的分层联邦学习激励机制
Incentive Mechanism for Hierarchical Federated Learning Based on Online Double Auction
计算机科学, 2022, 49(3): 23-30. https://doi.org/10.11896/jsjkx.210800051
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!