计算机科学 ›› 2023, Vol. 50 ›› Issue (6A): 220300023-7.doi: 10.11896/jsjkx.220300023

• 软件&交叉 • 上一篇    下一篇

一种基于网格的水利测绘无人机跟踪方法

姚喜   

  1. 山东省水利勘测设计院 济南 250013
  • 出版日期:2023-06-10 发布日期:2023-06-12
  • 通讯作者: 姚喜(594318623@qq.com)

Grid-based Tracking Method for Hydrographic Mapping UAV

YAO Xi   

  1. Shandong Survey and Design Institute of Water Conservancy,Jinan 250013,China
  • Online:2023-06-10 Published:2023-06-12
  • About author:YAO Xi,born in 1984,postgraduate,senior engineer.Her main research interests include photogrammetry and remote sensing,data processing,and equipment design of mapping UAV.

摘要: 随着测绘技术的不断发展,测绘无人机在水利工程中的应用不断深入。这一方面提升了水利测绘工作的效率,另一方面又带来了因失联、迫降等原因而产生的无人机寻找、监视等问题,如何对水利测绘无人机实现有效跟踪监视成为一项研究课题。鉴于此,文中提出了一种基于网格的水利测绘无人机跟踪方法,首先对以车载雷达站为原点的空间进行三维网格划分;然后基于雷达扫描的无人机空间信息锁定目标网格;再驱动摄像头采集无人机图像;最后,融合图像识别及雷达信息实现无人机识别与跟踪。对三维网格空间划分算法、网格映射算法、无人机识别算法、跟踪监视等算法进行了详细说明。实验验证了所提方法在水利测绘无人机的快速捕捉、有效锁定和持续跟踪方面具有优越性。

关键词: 网格, 水利测绘, 无人机, 图像识别, 跟踪监视

Abstract: With the development of surveying and mapping technology,unmanned aerial vehicles(UAV) have been widely used in hydraulic engineering.It has improved the efficiency of water conservancy surveying and mapping work.It has also brought about problems such as searching for and monitoring UAV,which are caused by the loss of communication and forced landing.How to effectively track the water conservancy mapping UAV has become a research topic.In view of this,this paper proposes a grid-based tracking method.The three-dimensional grid of the space is divided.The target grid is locked based on the spatial information scanned by radar.Driving the camera to collect UAV images.Image recognition and radar information are fused to realize UAV recognition and tracking.In this paper,three-dimensional mesh space division algorithm,mesh mapping algorithm,UAV identification algorithm,tracking and monitoring algorithms are described in detail.Experimental results show that this technique has advantages in fast capture,effective lock,tracking and surveillance of water conservancy mapping UAV.

Key words: Grid, Water conservancy mapping, UAV, Image recognition, Tracking and monitoring

中图分类号: 

  • TP311
[1]DENG L,MAO Z H,LI X J,et al.UAV-based multispectral remote sensing for precision agriculture:A comparison between different cameras[J].ISPRS Journal of Photogrammetry and Remote Sensing,2018,146(5):124-136.
[2]LIANG W J,HE X J.Application of UAV in water conservancy industry[J].Water Conservancy and Hydropower in Hunan Province,2017,11(6):43-45.
[3]MAO J C,ZHAO S J.Research on the application of low-altitude remote sensing in hydraulic engineering mapping[J].Architectural Technology Development,2020,47(19):85-86.
[4]YANG Z,LI J,ZIPPER C E,et al.Identification of the distur-bance and trajectory types in mining areas using multitemporal remote sensing images[J].Science of the Total Environment,2018,644(9):916-927.
[5]LEE S,CHOI Y.Reviews of unmanned aerial vehicle(drone)technology trends and its applications in the mining industry[J].Geosystem Engineering,2016,19(4):197-204.
[6]ZHOU T,MEGHDAD H S,HABIB A.Tightly-coupled camera/LiDAR integration for point cloud generation from GNSS/INS-assisted UAV mapping systems[J].ISPRS Journal of Photogrammetry and Remote Sensing,2021,180(4):336-356.
[7]HAYAJNEH A M,ZAIDI S A R,MCLERNON D C,et al.Performance Analysis of UAV Enabled Disaster Recovery Networks:A Stochastic Geometric Framework Based on Cluster Processes[J].IEEE Access,2018,6(7):26215-26230.
[8]ASMAMAW A G,LEILA H B.Three-Dimensional Inundation Mapping Using UAV Image Segmentation and Digital Surface Model[J].ISPRS International Journal of Geo-Information,2021,10(3):139-144.
[9]HU Y,XU Z Q,LIU W J.LOW-SPEED UAV target recognition based on RetinaNet[J].Modern Computer,2021,9(5):66-70.
[10]FENG Y P.Research on air target recognition and trackingtechnology[D].Shenyang:Shenyang Ligong University,2020.
[11]HE K,ZHANG X,REN S,et al.Deep residual learning forimage recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Las Vegas,2016:770-778.
[12]FAN T.Research and realization of video target detection system based on deep learning[J].International Journal of Wavelets Multiresolution and Information Processing,2019,13(7):142-149.
[13]YUAN D,ZHANG X,LIU J,et al.A multiple feature fusedmodel for visual object tracking via correlation filters[J].Multimedia Tools and Applications,2019(2):27271-27290.
[14]ULLAH M,CHEIKH F A.A Directed Sparse Graphical Model for Multi-target Tracking[C]//CVPRW.IEEE,2018:1897-1904.
[15]XU J.Research on air target recognition and tracking technology based on TDSDM642[D].Nanjing:Nanjing University of Aeronautics and Astronautics,2007.
[16]NAM H,HAN B.Learning Multi-Domain Convolutional Neural Networks for Visual Tracking[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR).Las Vegas,NV,USA,2016:4293-4302.
[17]TU T,ZHOU Z F,ZHOU W,et al.Multi-feature Fusion scale adaptive UAV tracking method[J].Sensors and Microsystems,2021,40(6):34-36,39.
[18]QI C,ZHANG D,CAI Y Y.Research on Infrared/radar low-small slow target tracking algorithm based on interactive multi-model[J].Shanghai Aerospace,2012,29(6):37-41.
[19]YE K,ZHU Y X.A radar target tracking algorithm based on machine learning[J].Information Technology,2019,13(10):158-160.
[20]LI Z Y.Research on radar target tracking algorithm based on machine learning[J].Information Technology and Informatization,2020(8):217-219.
[21]SONG H H,HUI F,JING S C,et al.Improved RetinaNet model for vehicle target detection[J].Computer Engineering and Applications,2019,55(13):225-230.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!