计算机科学 ›› 2022, Vol. 49 ›› Issue (6): 269-275.doi: 10.11896/jsjkx.210500070

• 计算机图形学&多媒体 • 上一篇    下一篇

多算法融合的骨骼重建信息动作分类方法

赵小虎, 叶圣, 李晓   

  1. 矿山互联网应用技术国家地方联合工程实验室(中国矿业大学) 江苏 徐州 221008
    中国矿业大学信息与控制工程学院 江苏 徐州 221008
  • 收稿日期:2021-05-11 修回日期:2021-09-06 出版日期:2022-06-15 发布日期:2022-06-08
  • 通讯作者: 叶圣(2447899579@qq.com)
  • 作者简介:(xiaohuzhao@126.com)
  • 基金资助:
    :国家重点研发计划(2017YFC0804400)

Multi-algorithm Fusion Behavior Classification Method for Body Bone Information Reconstruction

ZHAO Xiao-hu, YE Sheng, LI Xiao   

  1. National, Local Joint Engineering Laboratory of Internet Application Technology on Mine(China University of Mining, Technology), Xuzhou, Jiangsu 221008, China
    School of Information and Control Engineering,China University of Mining and Technology,Xuzhou,Jiangsu 221008,China
  • Received:2021-05-11 Revised:2021-09-06 Online:2022-06-15 Published:2022-06-08
  • About author:ZHAO Xiao-hu,born in 1976,Ph.D,professor,Ph.D supervisor.His main research interests include artificial intelligence,mine informatization,key technology of mine Internet of Things transmission layer.
    YE Sheng,born in 1996,postgraduate.His main research interests include computer vision and so on.
  • Supported by:
    National Key R & D Program of China(2017YFC0804400).

摘要: 针对行为监测在现实场景下实测效果较差的情况,提出了一种新型的提取人体运动特征的方法,该方法不仅考虑了骨骼点信息,也融合了图像的环境属性信息。考虑到现有的大量实验都是在提取人体骨骼特征的基础上融合多种复杂算法进行实验分类,并未考虑到仅仅使用提取骨骼特征进行算法评估的不合理性。因此提出了一种基于骨骼特征的图像信息重建方法,并结合骨骼特征的图卷积网络和注意力机制等算法以及图像识别方法以达到人体行为识别的目的。首先使用Openpose提取骨骼点信息;然后使用图卷积和注意力进行一次分类,在一次分类的基础上通过加入骨骼点扩张系数来分割图形,从而达到对分割的图形进行分类二次精确分类的目的;最后在HMDB51数据集上进行评估,结果表明所提方法的准确度相比对比方法平均提高了5.6%,在实际测试中其有较强的优势。这表明所提方法不仅更精确,同时也更具有实际应用价值。

关键词: Transformer, 动作分类, 图卷积网络, 图像识别, 注意力机制

Abstract: Aiming at the poor measurement effect of behavior monitoring in real life,a new method of extracting human behavior features is proposed.It not only considers the body point information,but also integrates the environmental attribute information of image.Considering that a large number of existing experiments use a variety of complex algorithms for experimental classification on the basis of human body features extraction,it does not take into account the irrationality of only using the body features for algorithm evaluation.Therefore,an image information reconstruction method based on body features is proposed in this paper,which combines the image convolution network of body features,attention mechanism and image recognition method to realize human behavior recognition.The body point information is extracted by Openpose,and then the body points are classified by graph convolution and attention.On the basis of the first classification,the body point expansion coefficient is added to segment the images so as to realize second accurate classification.Finally,the evaluation accuracy on the HMDB51 dataset improves by 5.6%,and it has a big advantage in the actual test.This shows that the method is not only more accurate,but also has more practical application value.

Key words: Action classification, Attention mechanism, Graph convolutional network, Image recognition, Transformer

中图分类号: 

  • TP391
[1] LIU M Z,ZHOU F Y,CHEN K,et al.Co-attention networks based on aspect and context for aspect-level sentiment analysis[J].Knowledge-Based Systems,2021,432(3),217-221.
[2] JEONG S,KANG S,CHUN I.Human-skeleton based Fall-Detection Method using LSTM for Manufacturing Industries[C]//2019 34th International Technical Conference on Circuits/Systems,Computers and Communications(ITC-CSCC).IEEE,2019:1-4.
[3] NIE Q,WANG X,WANG J,et al.A child caring robot for the dangerous behavior detection based on the object recognition and human action recognition[C]//2018 IEEE International Confe-rence on Robotics and Biomimetics (ROBIO).IEEE,2018:1921-1926.
[4] CAI Q.Human Behavior Recognition Algorithm Based on HOG Feature and SVM Classifier[C]//2019 IEEE 10th International Conference on Software Engineering and Service Science(ICSESS).IEEE,2019:233-236.
[5] YE Q,LI R,GUO X.Human Interaction Behavior Recognition based on Local Spatial-Temporal and Global Feature[C]//Journal of Physics:Conference Series.IOP Publishing,2021:1754-1758.
[6] XIANG L,WANG P,YANG X,et al.Fault detection of wind turbine based on SCADA data analysis using CNN and LSTM with attention mechanism[J].Measurement,2021,523(2):175-182.
[7] SHI L,ZHANG Y,CHENG J,et al.Two-streamadaptive graph convolutional networks for skeleton-based action recognition[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2019:12026-12035.
[8] ZHU S,DING X,YANG K,et al.A Spatial Attention-Enhanced Multi-Timescale Graph Convolutional Network for Skeleton-Based Action Recognition[C]//Proceedings of the 2020 3rd International Conference on Artificial Intelligence and Pattern Recognition.2020:57-62.
[9] YAN S,XIONG Y,LIN D.Spatial temporal graph convolutional networks for skeleton-based action recognition[C]//Procee-dings of the AAAI Conference on Artificial Intelligence.2018:32-36.
[10] GARCIA K D,DE SÁ C R,POEL M,et al.An ensemble of autonomous auto-encoders for human activity recognition[J].Neurocomputing,2021,439(2):271-280.
[11] GAN C,FENG Q,ZHANG Z.Scalable multi-channel dilatedCNN-BiLSTM model with attention mechanism for Chinese textual sentiment analysis[J].Future Generation Computer Systems,2021,118(3):297-309.
[12] XIANG L,WANG P,YANG X,et al.Fault detection of wind turbine based on SCADA data analysis using CNN and LSTM with attention mechanism[J].Measurement,2021,175(2):109-115.
[13] RUAN S,GAO J,XIANG J.Robert_LSTM Short Text Sentiment Classification Model Based on Attention Mechanism[J].International Core Journal of Engineering,2021,7(3):213-219.
[14] LI X,ZHAI W,CAO Y.A tri-attention enhanced graph convolutional network for skeleton-based action recognition[J].IET Computer Vision,2021,15(2):110-121.
[15] ZHOU W N,ZHOU S D.Summary of Model and Applications of Graph Convolutional Network[J].Journal of Research in Science and Engineering,2021,3(1),135-142.
[16] ZI W,XIONG W,CHEN H,et al.TAGCN:Station-level de-mand prediction for bike-sharing system via a temporal attention graph convolution network[J].Information Sciences,2021,561(3):274-285.
[17] MENG L,LI R.An Attention-EnhancedMulti-Scale and Dual Sign Language Recognition Network Based on a Graph Convolution Network[J].Sensors,2021,21(4):1120-1126.
[18] SUN Z,WANG R,LUO Z.Polynomial approximation basedspectral dual graph convolution for scene parsing and segmentation[J].Neurocomputing,2021,438(3):133-144.
[19] QIN J,ZENG X,WU S,et al.E-GCN:graph convolution with estimated labels[J].Applied Intelligence,2021,51(7):1-9.
[20] XING X,LI Q,YUAN M,et al.DS-GCNs:Connectome Classifi-cation using Dynamic Spectral Graph Convolution Networks with Assistant Task Training[J].Cerebral Cortex,2021,31(2):1259-1269.
[21] LI W,WANG X,ZHANG Y,et al.Traffic flow prediction over muti-sensor data correlation with graph convolution network[J].Neurocomputing,2021,427(1):50-63.
[22] CHANG C,LI X,GAO Y.A Graph Convolution model consi-dering label co-occurrence LC_GCN[C]//2020 3rd International Conference on Algorithms,Computing and Artificial Intelligence.2020:1-6.
[23] BAZI Y,BASHMAL L,RAHHAL M M A,et al.Vision Transformers for Remote Sensing Image Classification[J].Remote Sensing,2021,13(3):516-521.
[24] FAN S H,XIA D X.Study on the navigation of patrol robot of transformer substation based on color vision and RFID[C]//Advanced Materials Research.2011:1259-1264.
[25] TRETTENBREIN P C,ZACCARELLA E.Controlling VideoStimuli in Sign Language and Gesture Research:The Open PoseR Package for Analyzing OpenPose Motion-Tracking Data in R[J].Frontiers in Psychology,2021,12(1):411-412.
[26] SASITHRADEVI A,ROOMI S M M.Video classification and retrieval through spatio-temporal Radon features[J].Pattern Recognition,2020,99(2):107-114.
[27] lIAOZ,HU H,ZHANG J,et al.Residual attention unit for action recognition[J].Computer Vision and Image Understan-ding,2019,189(1):102-111.
[28] SUN L,JIA K,YEUNG D Y,et al.Human action recognitionusing factorized spatio-temporal convolutional networks[C]//Proceedings of the IEEE International Conference on Computer Vision.2015:7-13.
[29] SIMONYAN K,ZISSERMANA.Two-stream convolutional networks for action recognition in videos[J].arXiv:1406.2199,2014.
[30] FEICHTENHOFER C,PINZ A,ZISSERMAN A.Convolutional two-stream network fusion for video action recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:1933-1941.
[31] ZHU W,HU J,SUN G,et al.A key volume mining deep framework for action recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:1991-1999.
[32] WANG X,FARHADI A,GUPTA A.Actions~transforma-tions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:2658-2667.
[1] 饶志双, 贾真, 张凡, 李天瑞.
基于Key-Value关联记忆网络的知识图谱问答方法
Key-Value Relational Memory Networks for Question Answering over Knowledge Graph
计算机科学, 2022, 49(9): 202-207. https://doi.org/10.11896/jsjkx.220300277
[2] 周芳泉, 成卫青.
基于全局增强图神经网络的序列推荐
Sequence Recommendation Based on Global Enhanced Graph Neural Network
计算机科学, 2022, 49(9): 55-63. https://doi.org/10.11896/jsjkx.210700085
[3] 戴禹, 许林峰.
基于文本行匹配的跨图文本阅读方法
Cross-image Text Reading Method Based on Text Line Matching
计算机科学, 2022, 49(9): 139-145. https://doi.org/10.11896/jsjkx.220600032
[4] 周乐员, 张剑华, 袁甜甜, 陈胜勇.
多层注意力机制融合的序列到序列中国连续手语识别和翻译
Sequence-to-Sequence Chinese Continuous Sign Language Recognition and Translation with Multi- layer Attention Mechanism Fusion
计算机科学, 2022, 49(9): 155-161. https://doi.org/10.11896/jsjkx.210800026
[5] 熊丽琴, 曹雷, 赖俊, 陈希亮.
基于值分解的多智能体深度强化学习综述
Overview of Multi-agent Deep Reinforcement Learning Based on Value Factorization
计算机科学, 2022, 49(9): 172-182. https://doi.org/10.11896/jsjkx.210800112
[6] 姜梦函, 李邵梅, 郑洪浩, 张建朋.
基于改进位置编码的谣言检测模型
Rumor Detection Model Based on Improved Position Embedding
计算机科学, 2022, 49(8): 330-335. https://doi.org/10.11896/jsjkx.210600046
[7] 汪鸣, 彭舰, 黄飞虎.
基于多时间尺度时空图网络的交通流量预测模型
Multi-time Scale Spatial-Temporal Graph Neural Network for Traffic Flow Prediction
计算机科学, 2022, 49(8): 40-48. https://doi.org/10.11896/jsjkx.220100188
[8] 朱承璋, 黄嘉儿, 肖亚龙, 王晗, 邹北骥.
基于注意力机制的医学影像深度哈希检索算法
Deep Hash Retrieval Algorithm for Medical Images Based on Attention Mechanism
计算机科学, 2022, 49(8): 113-119. https://doi.org/10.11896/jsjkx.210700153
[9] 孙奇, 吉根林, 张杰.
基于非局部注意力生成对抗网络的视频异常事件检测方法
Non-local Attention Based Generative Adversarial Network for Video Abnormal Event Detection
计算机科学, 2022, 49(8): 172-177. https://doi.org/10.11896/jsjkx.210600061
[10] 闫佳丹, 贾彩燕.
基于双图神经网络信息融合的文本分类方法
Text Classification Method Based on Information Fusion of Dual-graph Neural Network
计算机科学, 2022, 49(8): 230-236. https://doi.org/10.11896/jsjkx.210600042
[11] 金方焱, 王秀利.
融合RACNN和BiLSTM的金融领域事件隐式因果关系抽取
Implicit Causality Extraction of Financial Events Integrating RACNN and BiLSTM
计算机科学, 2022, 49(7): 179-186. https://doi.org/10.11896/jsjkx.210500190
[12] 熊罗庚, 郑尚, 邹海涛, 于化龙, 高尚.
融合双向门控循环单元和注意力机制的软件自承认技术债识别方法
Software Self-admitted Technical Debt Identification with Bidirectional Gate Recurrent Unit and Attention Mechanism
计算机科学, 2022, 49(7): 212-219. https://doi.org/10.11896/jsjkx.210500075
[13] 彭双, 伍江江, 陈浩, 杜春, 李军.
基于注意力神经网络的对地观测卫星星上自主任务规划方法
Satellite Onboard Observation Task Planning Based on Attention Neural Network
计算机科学, 2022, 49(7): 242-247. https://doi.org/10.11896/jsjkx.210500093
[14] 张颖涛, 张杰, 张睿, 张文强.
全局信息引导的真实图像风格迁移
Photorealistic Style Transfer Guided by Global Information
计算机科学, 2022, 49(7): 100-105. https://doi.org/10.11896/jsjkx.210600036
[15] 曾志贤, 曹建军, 翁年凤, 蒋国权, 徐滨.
基于注意力机制的细粒度语义关联视频-文本跨模态实体分辨
Fine-grained Semantic Association Video-Text Cross-modal Entity Resolution Based on Attention Mechanism
计算机科学, 2022, 49(7): 106-112. https://doi.org/10.11896/jsjkx.210500224
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!