计算机科学 ›› 2023, Vol. 50 ›› Issue (8): 209-220.doi: 10.11896/jsjkx.220500275
周雪荃1, 杜逆索2, 欧阳智2
ZHOU Xuequan1, DU Nisuo2, OUYANG Zhi2
摘要: 针对白骨顶鸟优化算法(COOT)寻优精度低、容易陷入局部最优、收敛速度慢等问题,提出了基于柯西变异和差分进化的混沌白骨顶鸟算法(Logistic Chaos Coot bird algorithm based on Cauchy mutation and Differential evolution,CDLCOOT)。首先,通过柯西变异使白骨顶鸟位置发生扰动,扩大搜索范围,提高算法的全局搜索能力;其次,对领导者白骨顶鸟采取差分进化策略,增加种群多样性,使适应度更好的领导者带领种群寻优,引导白骨顶鸟个体向最优解前进,帮助其更快地搜索;最后,在白骨顶鸟进行链式运动时加入logistic混沌因子,从而实现混沌的链式跟随运动,提高算法跳出局部最优的能力。在12个经典的测试函数和9个CEC2017测试函数上进行仿真实验,将CDLCOOT算法与正余弦算法(SCA)、灰狼优化算法(GWO)、蚁狮优化算法(ALO)、黑洞模拟算法(MVO)等其他先进算法及原始COOT算法、具有单一策略的原算法进行对比,验证改进算法的有效性。实验结果表明,CDLCOOT算法相比其他启发式算法和改进算法具有更好的全局寻优能力和更快的收敛速度。在经典测试函数中,对于4个单模态函数,CDLCOOT算法寻优平均值相比原始算法平均提高了76个数量级;在2个多模态函数上寻到理论最优值,在另外2个多模态函数上寻优平均值分别比原始算法提高了三四个数量级;在4个固定维度多模态函数上,算法都能寻到理论最优值,收敛速度更快。在CEC2017测试函数中,所提算法在单模态、多模态和混合模态上的收敛精度相比原算法都有所提升,且其收敛速度也比原算法和其他算法更快,算法稳定性更高。
中图分类号:
[1]MIRJALILI S,MIRJALILI S M,LEWIS A.Grey wolf optimizer[J].Advances inEngineering Software,2014,69:46-61. [2]MIRJALILI S.Dragonfly algorithm:a new meta-heuristic optimization technique for solving single-objective,discrete,and multi-objective problems[J].Neural Computing and Applications,2016,27(4):1053-1073. [3]MIRJALILI S,LEWIS A.The whale optimization algorithm[J].Advances in Engineering Software,2016,95:51-67. [4]SAREMI S,MIRJALILI S,LEWIS A.Grasshopper optimisation algorithm:theory and application[J].Advances in Engineering Software,2017,105:30-47. [5]ARORA S,SINGH S.Butterfly optimization algorithm:a novelapproach for global optimization[J].Soft Computing,2019,23(3):715-734. [6]XUE J,SHEN B.A novel swarm intelligence optimization approach:sparrow search algorithm[J].Systems Science & Control Engineering,2020,8(1):22-34. [7]NARUEI I,KEYNIA F.A new optimization method based onCOOT bird natural life model[J].Expert Systems with Applications,2021,183:115352. [8]MEMARZADEH G,KEYNIA F.A new optimal energy storage system model for wind power producers based on long short term memory and Coot Bird Search Algorithm[J].Journal of Energy Storage,2021,44:103401. [9]MAHDY A,HASANIEN H M,HELMY W,et al.Transientstability improvement of wave energy conversion systems connected to power grid using anti-windup-coot optimization strategy[J].Energy,2022,245:123321. [10]HA P T,TRAN D T,NGUYEN T T.Electricity generationcost reduction for hydrothermal systems with the presence of pumped storage hydroelectric plants[J].Neural Computing and Applications,2022,34(12):9931-9953. [11]HOUSSEIN E H,HASHIM F A,FERAHTIA S,et al.Battery parameter identification strategy based on modified coot optimization algorithm[J].Journal of Energy Storage,2022,46:103848. [12]ALQAHTANI A S,SARAVANAN P,MAHESWARI M.et al.An automatic query expansion based on hybrid CMO-COOT algorithm for optimized information retrieval[J].The Journal of Supercomputing,2022,78:8625-8643. [13]HUANG Y,ZHANG J,WEI W,et al.Research on Coverage Optimization in a WSN Based on an Improved COOT Bird Algorithm[J].Sensors,2022,22(9):3383. [14]PAHADE J K,JHA M.A Hybrid Fuzzy-SCOOT Algorithm to Optimize Possibilistic Mean Semi-absolute Deviation Model for Optimal Portfolio Selection[J].International Journal of Fuzzy Systems,2022,24(4):1958-1973. [15]WANG Q,HE Q,LIN J,et al.Chaos ant lion optimizer based on elite opposition-based learning with perturbation factor[J].Intelligent Computer and Applications,2020,10(8):51-57. [16]MAO Q H,ZHANG Q.Improved Sparrow Algorithm Combining Cauchy Mutation and Opposition-Based Learning[J].Journal of Frontiers of Computer Science and Technology,2021,15(6):1155-1164. [17]HE Z M,LI W J.Flower pollination algorithm based on dynamic global search and Cauchy mutation[J].Computer Engineering and Applications,2019,55(19):74-80,222. [18]ZHAO Y T,CHEN J C,LI W G.Multi-objective Grey Wolf Optimization Hybrid Adaptive Differential Evolution Mechanism[J].Computer Science,2019,46(S2):83-88. [19]LIN J,HE Q.Fusion Sine Cosine and Mutation Selection Grasshopper Optimization Algorithm[J].Journal of Chinese Compu-ter Systems,2021,42(4):706-713. [20]HE Q,LIN J,XU H.Hybrid Cauchy mutation and uniform distribution of grasshopper optimization algorithm[J].Control and Decision,2021,36(7):1558-1568. |
|