计算机科学 ›› 2020, Vol. 47 ›› Issue (8): 297-301.doi: 10.11896/jsjkx.190700063

• 人工智能 • 上一篇    下一篇

集成随机惯性权重和差分变异操作的樽海鞘群算法

张志强, 鲁晓锋, 隋连升, 李军怀   

  1. 西安理工大学计算机科学与工程学院 西安 710048
  • 出版日期:2020-08-15 发布日期:2020-08-10
  • 通讯作者: 张志强(chinazzq@126.com)
  • 基金资助:
    陕西省教育厅自然科学研究项目(18JK0557);陕西省科技计划项目(2018HJCG-05);西安市科技计划项目(201805037YD15CG21(4))

Salp Swarm Algorithm with Random Inertia Weight and Differential Mutation Operator

ZHANG Zhi-qiang, LU Xiao-feng, SUI Lian-sheng, LI Jun-huai   

  1. School of Computer Science & Engineering, Xi’an University of Technology, Xi’an 710048, China
  • Online:2020-08-15 Published:2020-08-10
  • About author:ZHANG Zhi-qiang, born in 1973, Ph.D, lecturer, is a member of China Compu-ter Federation.His main research inte-rests include computational intelligence and optimization technology.
  • Supported by:
    This work was supported by the Natural Science Research Program of the Educational Department of Shaanxi Province (18JK0557), Scientific Research Program of Shaanxi Province( 2018HJCG-05) and Project of Xi’an Science and Technology Planning Foundation (201805037YD15CG21(4)).

摘要: 为了提高樽海鞘群算法(Salp Swarm Algorithm, SSA)的收敛速度、计算精度和全局优化能力, 在分析总结粒子群优化(Particle Swarm Optimization, PSO)和差分进化(Differential Evolution, DE)算法相关研究成果后, 提出了一种集成PSO算法随机惯性权重和DE算法差分变异操作的改进SSA算法——iSSA。首先, 将PSO算法的随机惯性权重引入SSA算法的追随者位置更新公式中, 用于增强和平衡SSA算法的勘探与开发能力;其次, 用DE算法的变异操作替代SSA算法的领导者位置更新操作, 以提高SSA算法的收敛速度和计算精度。为了检验随机惯性权重和差分变异操作对SSA算法的改进效果, 在多个高维基准函数上进行了仿真实验, 并与其他改进SSA算法进行了比较。实验结果及分析表明, 与SSA算法和两个典型的改进SSA算法(ESSA和CASSA)相比, 集成随机惯性权重和差分变异操作的iSSA算法, 在没有增加算法时间复杂度的情况下, 显著地提高了SSA算法的收敛速度、计算精度和全局优化能力, 并且优于ESSA算法和CASSA 算法。

关键词: 变异操作, 差分进化, 粒子群优化, 群体智能, 随机惯性权重, 樽海鞘群算法

Abstract: After analyzing and summarizing the related research achievements of particle swarm optimization (PSO) and differential evolution (DE) algorithms, this paper proposes an improved salp swarm algorithm (iSSA) with random inertia weight and differential mutation operator for enhancing the convergence rate, computational accuracy and global optimization of SSA algorithm.Firstly, the random inertia weight of particle swarm optimization is introduced in the followers’ position update equation of SSA algorithm in order to enhance and balance the exploration and exploitation ability of SSA algorithm.Secondly, the leader position update of SSA algorithm is replaced with the mutation operator of differential evolution algorithm DE, which is used to improve the convergence rate and computational accuracy of SSA algorithm.For the purpose of checking the improvement effect on SSA algorithm by the random inertia weight and differential mutation operator, simulation experiments on some high-dimension benchmark functions are performed and comparisons between the proposed iSSA and two typical improved SSA algorithms named by enhanced salp swarm algorithm (ESSA) and crazy and adaptive salp swarm algorithm (CASSA) are performed.The experimental results and analysis show that, the proposed iSSA with random inertia weight and differential mutation operator obviously improves the convergence rate, computational accuracy and global optimization when compared with two typical improved ESSA and CASSA algorithms in the case of no any increase in the time complexity of SSA algorithm.

Key words: Differential evolution, Mutation operator, Particle swarm optimization, Random inertia weight, Salp swarm algorithm, Swarm intelligence

中图分类号: 

  • TP183
[1]MIRJALILI S, GANDOMI A H, MIRJALILI S Z, et al.Salp Swarm Algorithm:A bio-inspired optimizer for engineering design problems [J].Advances in Engineering Software, 2017, 114:163-191.
[2]FARIS H, MIRJALILI S, ALJARAH I, et al.Nature-Inspired Optimizers [M].Switzerland:Springer International Publishing, 2020:185-199.
[3]SAYED G I, KHORIBA G, HAGGAG M H.A novel chaotic salp swarm algorithm for global optimization and feature selection [J].Applied Intelligence, 2018, 48(10):3462-3481.
[4]WANG D, ZHOU Y, JIANG S, et al.A Simplex Method-Based Salp Swarm Algorithm for Numerical and Engineering Optimization [C]∥International Conference on Intelligent Information Processing.Cham:Springer, 2018:150-159.
[5]QAIS M H, HASANIEN H M, ALGHUWAINEM S.Enhanced salp swarm algorithm:Application to variable speed wind gene-rators [J].Engineering Applications of Artificial Intelligence, 2019, 80:82-96.
[6]POLI R, KENNEDY J, BLACKWELL T.Particle swarm optimization.An overview [J].Swarm Intelligence, 2007, 1(1):33-57.
[7]WU J, NAN R, CHEN L.Improved salp swarm algorithm based on weight factor and adaptive mutation [J].Journal of Experimental & Theoretical Artificial Intelligence, 2019, 31(3):493-515.

[8]MIRJALILI S.SCA:A Sine Cosine Algorithm for solving optimization problems [J].Knowledge-Based Systems, 2016, 96:120-133.
[9]SINGH N, SON L H, CHICLANA F, et al.A new fusion of salp swarm with sine cosine for optimization of non-linear functions [J].Engineering with Computers, 2020, 36:185-212.
[10]MAJHI S K, MISHRA A, PRADHAN R.A chaotic salp swarm algorithm based on quadratic integrate and fire neural model for function optimization [J].Progress in Artificial Intelligence, 2019:1-16.
[11]YANG B, ZHONG L, ZHANG X, et al.Novel bio-inspiredmemetic salp swarm algorithm and application to MPPT for PV systems considering partial shading condition [J].Journal of Cleaner Production, 2019, 215:1203-1222.
[12]WANG M Q, WANG Y, JI Z C.Permanent Magnet Synchronous Motor Multi-parameter Identification Based on Improved Salp Swarm Algorithm [J].Journal of System Simulation, 2018, 30(11):4284-4297.
[13]ZHANG D M, CHEN Z Y, XIN Z Y, et al.Salp Swarm Algorithm Based on Craziness and Adaptive [J].Control and Decision, 2020, 35(9):2112-2120.
[14]PRICE K, STORN R M, LAMPINEN J A.Differential Evolution:A Practical Approach to Global Optimization [M].Berlin:Springer-Verlag, 2005:37-130.
[15]HARRISON K R, ENGELBRECHT A P, OMBUKI-BERMAN B M.Inertia weight control strategies for particle swarm optimization [J].Swarm Intelligence, 2016, 10(4):267-305.
[16]EBERHART R C, SHI Y.Tracking and optimizing dynamic systems with particle swarms [C]∥Proceedings of the 2001 Congress on Evolutionary Computation.IEEE, 2001:94-100.
[17]DAS S, MULLICK S S, SUGANTHAN P N.Recent advances in differential evolution-An updated survey [J].Swarm and Evolutionary Computation, 2016, 27:1-30.
[18]MIRJALILI S.Salp Swarm Algorithm[EB/OL].http://www.alimirjalili.com/SSA.html.
[1] 赵冬梅, 吴亚星, 张红斌.
基于IPSO-BiLSTM的网络安全态势预测
Network Security Situation Prediction Based on IPSO-BiLSTM
计算机科学, 2022, 49(7): 357-362. https://doi.org/10.11896/jsjkx.210900103
[2] 刘宝宝, 杨菁菁, 陶露, 王贺应.
基于DE-LSTM模型的教育统计数据预测研究
Study on Prediction of Educational Statistical Data Based on DE-LSTM Model
计算机科学, 2022, 49(6A): 261-266. https://doi.org/10.11896/jsjkx.220300120
[3] 刘漳辉, 郑鸿强, 张建山, 陈哲毅.
多无人机使能移动边缘计算系统中的计算卸载与部署优化
Computation Offloading and Deployment Optimization in Multi-UAV-Enabled Mobile Edge Computing Systems
计算机科学, 2022, 49(6A): 619-627. https://doi.org/10.11896/jsjkx.210600165
[4] 罗文聪, 郑嘉利, 全艺璇, 谢孝德, 林子涵.
基于改进型多目标樽海鞘群算法的RFID阅读器天线优化部署
Optimized Deployment of RFID Reader Antenna Based on Improved Multi-objective Salp Swarm Algorithm
计算机科学, 2021, 48(9): 292-297. https://doi.org/10.11896/jsjkx.200700167
[5] 屈立成, 吕娇, 屈艺华, 王海飞.
基于模糊神经网络的运动目标智能分配定位算法
Intelligent Assignment and Positioning Algorithm of Moving Target Based on Fuzzy Neural Network
计算机科学, 2021, 48(8): 246-252. https://doi.org/10.11896/jsjkx.200600050
[6] 殷子樵, 郭炳晖, 马双鸽, 米志龙, 孙怡帆, 郑志明.
群智体系网络结构的自治调节:从生物调控网络结构谈起
Autonomous Structural Adjustment of Crowd Intelligence Network: Begin from Structure of Biological Regulatory Network
计算机科学, 2021, 48(5): 184-189. https://doi.org/10.11896/jsjkx.210200161
[7] 俞家珊, 吴雷.
双领导者樽海鞘群算法
Two Types of Leaders Salp Swarm Algorithm
计算机科学, 2021, 48(4): 254-260. https://doi.org/10.11896/jsjkx.200600181
[8] 张严, 秦亮曦.
基于Levy飞行策略的改进樽海鞘群算法
Improved Salp Swarm Algorithm Based on Levy Flight Strategy
计算机科学, 2020, 47(7): 154-160. https://doi.org/10.11896/jsjkx.190600068
[9] 侯改, 何朗, 黄樟灿, 王占占, 谈庆.
基于差分进化的金字塔演化策略求解一维下料问题
Pyramid Evolution Strategy Based on Differential Evolution for Solving One-dimensional Cutting Stock Problem
计算机科学, 2020, 47(7): 166-170. https://doi.org/10.11896/jsjkx.190500014
[10] 宋岩, 胡瑢华, 郭福民, 袁新亮, 熊睿洋.
基于sEMG的改进SVM+BP肌力预测分层算法
Improved SVM+BP Algorithm for Muscle Force Prediction Based on sEMG
计算机科学, 2020, 47(6A): 75-78. https://doi.org/10.11896/JsJkx.190900143
[11] 李建军, 汪校铃, 杨玉, 付佳.
基于CQPSO移动群智感知紧急任务分配方法研究
Emergency Task Assignment Method Based on CQPSO Mobile Crowd Sensing
计算机科学, 2020, 47(6A): 273-277. https://doi.org/10.11896/JsJkx.190700040
[12] 李章维,王柳静.
基于群体分布的自适应差分进化算法
Population Distribution-based Self-adaptive Differential Evolution Algorithm
计算机科学, 2020, 47(2): 180-185. https://doi.org/10.11896/jsjkx.181202356
[13] 吴文峻, 于鑫, 蒲彦均, 汪群博, 于笑明.
微服务时代的复杂服务软件开发
Development of Complex Service Software in Microservice Era
计算机科学, 2020, 47(12): 11-17. https://doi.org/10.11896/jsjkx.200700181
[14] 郑波, 马昕.
基于双变异粒子群优化算法优化的支持向量机及其在民航发动机损伤类型识别中的应用
Application on Damage Types Recognition in Civil Aeroengine Based on SVM Optimized by DMPSO
计算机科学, 2020, 47(11A): 132-138. https://doi.org/10.11896/jsjkx.200600101
[15] 王瑄, 毛莺池, 谢在鹏, 黄倩.
基于差分进化的推断任务卸载策略
Inference Task Offloading Strategy Based on Differential Evolution
计算机科学, 2020, 47(10): 256-262. https://doi.org/10.11896/jsjkx.190800159
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!