计算机科学 ›› 2023, Vol. 50 ›› Issue (8): 221-225.doi: 10.11896/jsjkx.220700181

• 人工智能 • 上一篇    下一篇

基于蜂群优化的Spiking神经网络模型研究与评估

马韦伟1, 郑勤红2, 刘珊珊3   

  1. 1 云南师范大学教育学部 昆明 650500
    2 云南师范大学物理与电子信息学院 昆明 650500
    3 亚太科技大学科技学院 吉隆坡56000
  • 收稿日期:2022-07-19 修回日期:2022-08-28 出版日期:2023-08-15 发布日期:2023-08-02
  • 通讯作者: 郑勤红(zheng_qh62@aliyun.com)
  • 作者简介:(marqul2003@163.com)
  • 基金资助:
    国家自然科学基金(61961044);教育部人文社会科学研究基金项目(20XJA880008);云南省教育厅科学研究基金项目(2021Y512)

Study and Evaluation of Spiking Neural Network Model Based on Bee Colony Optimization

MA Weiwei1, ZHENG Qinhong2, LIU Shanshan3   

  1. 1 Faculty of Education,Yunnan Normal University,Kunming 650500,China
    2 College of Physics and Electronic Information,Yunnan Normal University,Kunming 650500,China
    3 School of Technology,Asia-pacific University of Science and Technology,Kuala Lumpur 56000,Malaysia
  • Received:2022-07-19 Revised:2022-08-28 Online:2023-08-15 Published:2023-08-02
  • About author:MA Weiwei,born in 1980,Ph.D,asso-ciate professor.His main research intere-sts include artificial intelligence and big data,statistical analysis of education.
    ZHENG Qinhong,born in 1962,Ph.D,professor.His main research interests include artificial intelligence and big data,statistical analysis of education.
  • Supported by:
    National Natural Science Foundation of China(61961044),Research Fund for Humanities and Social Sciences of the Ministry of Education(20XJA880008) andScience and Research Foundation of the Education Department of Yunnan Province,China(2021Y512).

摘要: 为提高Spiking神经网络的训练能力,以多标签分类问题作为研究切入点,采用蜂群算法进行模型优化。基于Spiking理念的神经网络模型有多种,文中选择概率Spiking神经网络(Probabilistic Spiking Neural Network,PSNN)进行多标签分类。首先,建立概率Spiking神经网络分类模型,通过点火时间序列进行编码,触发脉冲响应实现数据传递;然后,利用Spiking神经网络的权重、动态阈值、遗忘参数等构建蜂群,并以多标签分类准确率作为人工蜂群(Artificial Bee Colony,ABC)算法的适应度函数,从而通过不断更新蜂群个体适应度值来获得最优个体;最后,以最优参数完成概率Spiking神经网络的多标签分类。实验结果表明,通过合理设置蜂群个体规模及蜜源搜索范围,ABC-PSNN算法能够获得较高的多标签分类准确率。相比其他Spiking神经网络模型和常用多标签分类算法,ABC-PSNN算法具备更高的分类准确率和稳定性。

关键词: Spiking神经网络, 概率Spiking神经网络, 蜂群算法, 多标签分类, 脉冲响应

Abstract: In order to improve the training ability of Spiking neural network,this paper takes multi-label classification problem as the research breakthrough point and adopts bee colony algorithm to optimize the model.There are many neural network models based on the concept of Spiking.Probabilistic Spiking neural network(PSNN) is selected for multi-label classification.Firstly,a probabilistic Spiking neural network classification model is established.The ignition time sequence is coded,and the pulse res-ponse is triggered to realize data transmission.Then,the weight,dynamic threshold and forgetting parameters of Spiking neural network are used to construct bee colony,and the accuracy of multi-label classification is used as the fitness function of artificial bee colony(ABC) algorithm,so that the optimal individual can be obtained by constantly updating the fitness value of individual bee colony.Finally,the multi-label classification of probabilistic Spiking neural network is completed with the optimal parameters.Experimental results show that ABC-PSNN algorithm can achieve high multi-label classification accuracy by reasonably setting the individual size of bee colony and honey source search range.Compared with other Spiking neural network models and commonly used multi-label classification algorithms,ABC-PSNN algorithm has higher classification accuracy and stability.

Key words: Spiking neural network, Probabilistic Spiking neural network, Bee colony algorithm, Multi label classification;Impulse response

中图分类号: 

  • TP3-05
[1]SONG D,LU K,DAI X F.Research on Mail Classification Algorithm Based on Improved Convolutional Neural Network[J].Journal of Chongqing Technology and Business University(Na-tural Science Edition),2022,39(3):20-25.
[2]ZHANG X F,WANG Z Q,TANG Y L.Helmet Detection Based on YOLO-CDF Neural Network[J].Journal of Chongqing Technology and Business University(Natural Science Edition),2022,39(4):32-41.
[3]ZHUANG Z J,FANG Y,LEI J C,et al.Research on impulse neural network based on STDP rules[J].Computer Enginee-ring,2020,46(9):83-88,94.
[4]WANG Q H,WANG L N,XU S.Research and application of pulse neural network model fused with LSTM structure[J].Computer Application Research,2021,38(5):1381-1386.
[5]AUGE D,HILLE J,MUELLER E,et al.A survey of encoding techniques for signal processing in spiking neural networks[J].Neural Processing Letters,2021,53(6):4693-4710.
[6]WEI Q M,LI Y B,YING Y L.Network security situation prediction based on Dempster-Shafer evidence theory and recurrent neural network [J].Journal of University of Jinan(Science and Technology),2020,34(3):238-246.
[7]XIAO M,MENG Q,ZHANG Z,et al.Training feedback spiking neural networks by implicit differentiation on the equilibrium state[J].Advances in Neural Information Processing Systems,2021,34:14516-14528.
[8]FANG W,YU Z,CHEN Y,et al.Deep residual learning in spiking neural networks[J].Advances in Neural Information Processing Systems,2021,34:21056-21069.
[9]LOBO J L,DEL SER J,BIFET A,et al.Spiking neural networks and online learning:An overview and perspectives[J].Neural Networks,2020,121:88-100.
[10]TAVANAEI A,GHODRATI M,KHERADPISHEH S R,et al.Deep learning in spiking neural networks[J].Neural Networks,2019,111:47-63.
[11]AWADALLAH M A,AL-BETAR M A,BOLAJI A L,et al.Natural selection methods for artificial bee colony with new versions of onlooker bee[J].Soft Computing,2019,23(15):6455-6494.
[12]LI J Q,SONG M X,WANG L,et al.Hybrid Artificial Bee Colony Algorithm for a Parallel Batching Distributed Flow-Shop Problem With Deteriorating Jobs[J].IEEE Transactions on Cybernetics,2020,50(6):2425-2439.
[13]FOROUZANDEH S,BERAHMAND K,NASIRI E,et al.AHotel Recommender System for Tourists Using the Artificial Bee Colony Algorithm and Fuzzy TOPSIS Model:A Case Study of TripAdvisor[J].International Journal of Information Technology and Decision Making,2021,20(1):399-429.
[14]LIU J,GUO Z W,SUN Z W,et al.Research on fast multi label support vector machine classification algorithm using divide and conquer strategy[J].Journal of Ocean University of China(Na-tural Science Edition),2020,50(12):160-166.
[15]LIU J Z,DUAN L.Network security text multi label classification method based on Albert textcnn[J].Naval Electronic Engineering,2022,42(3):114-118,170.
[16]YANG M H,CHEN L,LIU H,et al.Multi label remote sensing image classification based on graph convolution network[J].Computer Application Research,2021,38(11):3439-3445.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!