计算机科学 ›› 2023, Vol. 50 ›› Issue (9): 62-67.doi: 10.11896/jsjkx.220700174
赵宇豪1, 陈思光1, 苏健2
ZHAO Yuhao1, CHEN Siguang1, SU Jian2
摘要: 联邦学习在保证各分布式客户端训练数据不出本地的情况下,由中心服务器收集梯度协同训练全局网络模型,具有良好的性能与隐私保护优势。但研究表明,联邦学习存在梯度传递引起的数据隐私泄漏问题。针对现有安全联邦学习算法存在的模型学习效果差、计算开销大和防御攻击种类单一等问题,提出了一种抗推理攻击的隐私增强联邦学习算法。首先,构建了逆推得到的训练数据与训练数据距离最大化的优化问题,基于拟牛顿法求解该优化问题,获得具有抗推理攻击能力的新特征。其次,利用新特征生成梯度实现梯度重构,基于重构后的梯度更新网络模型参数,可提升网络模型的隐私保护能力。最后,仿真结果表明所提算法能够同时抵御两类推理攻击,并且相较于其他安全方案,所提算法在保护效果与收敛速度上更具优势。
中图分类号:
[1]MCMAHAN B,MOORE E,RAMAGE D,et al.Communication-efficient learning of deep networks from decentralized data [C]//Proceedings of the 20th International Conference on Artificial Intelligence and Statistics(AISTATS).2016:1273-1282. [2]YANG Q,LIU Y,CHEN T,et al.Federated machine learning:Conceptand applications [J].ACM Transactions on Intelligent Systems and Technology,2019,10(2):1-19. [3]BONAWITZ K,EICHNER H,GRIESKAMP W,et al.Towards federated learning at scale:System design [C]//Proceedings of Machine Learning and Systems(MLSys).2019:374-388. [4]LI T,SAHU A K,TALWALKAR A,et al.Federated learning:Challenges,methods,and future directions [J].IEEE Signal Processing Magazine,2020,37(3):50-60. [5]ZHU L,LIU Z,HAN S.Deep leakage from gradients [C]//Pro-ceedings of Advances in Neural Information Processing Systems(NIPS).2019:17-31. [6]GEIPING J,BAUERMEISTER H,DRÖGE H,et al.Inverting gradients-how easy is it to break privacy in federated learning? [C]//Proceedings of Advances in Neural Information Proces-sing Systems(NIPS).2020:16937-16947. [7]WANG Z,SONG M,ZHANG Z,et al.Beyond inferring class representatives:User-level privacy leakage from federated lear-ning[C]//Proceedings of IEEE International Conference on Computer Communications(INFOCOM).2019:2512-2520. [8]LIU J,MENG X.Survey on Privacy-Preserving Machine Lear-ning[J].Journal of Computer Research and Development,2020,57(2):346-362. [9]WEI K,LI J,DING M,et al.Federated learning with differentialprivacy:Algorithms and performance analysis [J].IEEE Tran-sactions on Information Forensics and Security,2020,15:3454-3469. [10]MCMAHAN H B,RAMAGE D,TALWAR K,et al.Learning differentially private recurrent language models [C]//Procee-dings of International Conference on Learning Representations(ICLR).2018:171-182. [11]TRUEX S,LIU L,CHOW K H,et al.LDP-Fed:Federatedlearning with local differential privacy [C]//Proceedings of the Third ACM International Workshop on Edge Systems(EdgeSys).2020:61-66. [12]BONAWITZ K,IVANOV V,KREUTER B,et al.Practical secure aggregation for privacy-preserving machine learning [C]//Proceedings of ACM SIGSAC Conference on Computer and Communications Security(CCS).2017:1175-1191. [13]LIU Y,KANG Y,XING C,et al.A secure federated transfer learning framework[J].IEEE Intelligent Systems,2020,35(4):70-82. [14]WEI W,LIU L,WUT Y,et al.Gradient-leakage resilient federa-ted learning [C]//Proceedings of the 41st IEEE International Conference on Distributed Computing Systems(ICDCS).2021:797-807. [15]WU N,FAROKHI F,SMITH D,et al.The value of collaboration in convex machine learning with differential privacy [C]//Proceedings of IEEE Symposium on Security and Privacy(SP).2020:304-317. [16]LIN Y,HAN S,MAO H,et al.Deep gradient compression:Reducing the communication bandwidth for distributed training[C]//Proceedings of International Conference on Learning Representations(ICLR).2017:1-12. [17]MARTINS P,SOUSA L,MARIANO A.A survey on fully homomorphic encryption:An engineering perspective [J].ACM Computing Surveys,2017,50(6):1-33. [18]ACAR A,AKSU H,ULUAGAC A S,et al.A survey on homomorphic encryption schemes:Theory and implementation [J].ACM Computing Surveys,2018,51(4):1-35. [19]ZHANG Z,FU Y,HE N,GAO T.Research on Federated Deep Neural Network Model for Data Privacy Preserving[J].Acta Automatica Sinica,2022,48(5):1273-1284. [20]SUN J,LI A,WANG B,et al.Soteria:Provable defense against privacy leakage in federated learning from representation perspective [C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).2021:9311-9319. [21]JIANG B,LI J,WANG H,et al.Privacy-Preserving federatedlearning for industrial edge computing via hybrid differential privacy and adaptive compression [J].IEEE Transactions on Industrial Informatics,2023,19(2):1136-1144. |
|