计算机科学 ›› 2023, Vol. 50 ›› Issue (10): 203-213.doi: 10.11896/jsjkx.220900242

• 人工智能 • 上一篇    下一篇

基于两层知识迁移的多代理多任务优化方法

马慧, 冯翔, 虞慧群   

  1. 华东理工大学计算机科学与工程系 上海200237
    上海智慧能源工程技术研究中心 上海200237
  • 收稿日期:2022-09-26 修回日期:2023-03-09 出版日期:2023-10-10 发布日期:2023-10-10
  • 通讯作者: 冯翔(xfeng@ecust.edu.cn)
  • 作者简介:(531199628@qq.com)
  • 基金资助:
    国家自然科学基金面上项目(62276097);国家自然科学基金重点项目(62136003);国家重点研发计划(2020YFB1711700);上海市经信委“信息化发展专项资金”(XX-XXFZ-02-20-2463);上海市科技创新行动计划(21002411000)

Multi-surrogate Multi-task Optimization Approach Based on Two-layer Knowledge Transfer

MA Hui, FENG Xiang, YU Huiqun   

  1. Department of Computer Science and Engineering,East China University of Science and Technology,Shanghai 200237,China
    Shanghai Engineering Research Center of Smart Energy,Shanghai 200237,China
  • Received:2022-09-26 Revised:2023-03-09 Online:2023-10-10 Published:2023-10-10
  • About author:MA Hui,born in 1997,postgraduate.Her main research interests include artificial intelligence and evolutionary multi-task optimization.FENG Xiang,born in 1977,Ph.D,professor,is a member of China Computer Federation.Her main research interests include artificial intelligence,swarm intelligence and evolutionary computing,big data intelligence.
  • Supported by:
    National Natural Science Foundation of China(62276097),Key Program of National Natural Science Foundation of China(62136003),National Key Research and Development Program of China(2020YFB1711700),Special Fund for Information Development of Shanghai Economic and Information Commission(XX-XXFZ-02-20-2463) and Scientific Research Program of Shanghai Science and Technology Commission(21002411000).

摘要: 进化多任务优化是计算智能领域一个新兴的研究方向,它致力于研究通过进化算法如何同时、有效地求解多个优化问题,从而提高单独求解每个任务的性能。基于此,提出了一种基于两层知识迁移的多代理多任务优化算法(AMS-MTO),其通过在代理间和代理内同时进行知识迁移来达到跨域优化的目的。具体来讲,代理内的知识迁移是通过差分进化实现决策变量信息的跨维迁移,从而避免算法陷入局部最优;代理间的学习采用了隐式知识迁移和显式知识迁移两种策略。隐式知识迁移利用种群的选择性交叉来产生后代,促进遗传信息的交流;显式知识迁移是对精英个体的迁移,可以弥补隐式迁移随机性很强的缺点。为了评估两层知识迁移的多代理多任务优化方法的有效性,在8个高达100维的基准问题上进行了实证研究,同时给出了收敛证明,并将其与现有的算法进行了对比。实验结果表明,在求解单目标优化的昂贵问题时,AMS-MTO算法效率更高,性能更好,收敛速度更快。

关键词: 进化多任务优化, 多代理, 知识迁移, 精英个体, 隐式迁移

Abstract: Evolutionary multi-task optimization is a new research direction in the field of computational intelligence.It focuses on how to handle multiple optimization tasks effectively and simultaneously through evolutionary algorithm,so as to enhance the performance of solving each task individually.Based on this,a multi-surrogate and multi-task optimization approach based on two-layer knowledge transfer(AMS-MTO) is proposed,which achieves the purpose of cross-domain optimization by transferring knowledge between surrogates and within surrogates at the same time.Specifically,the knowledge transfer within the surrogates realizes the cross-dimensional transfer of decision variable information through differential evolutionary,so as to avoid the algorithm falling into local optimum.The learning between surrogates adopts two strategies:implicit knowledge transfer and explicit knowledge transfer.The former uses the selective crossover of populations to generate offspring and promote the exchange of genetic information.The latter is mainly the transfer of elite individuals,which can make up for the strong randomness of implicit transfer.For the sake of evaluate the effectiveness of the AMS-MTO algorithm,we carry out an empirical study on 8 benchmark problems up to 100 dimension.At the same time,we give the convergence proof and compare it with the existing algorithms.Experiment resultsshow that when solving expensive problems of single objective optimization,the AMS-MTO algorithm has higher efficiency,better performance and faster convergence speed.

Key words: Evolutionary multi-task optimization, Multi-surrogate, Knowledge transfer, Elite individuals, Implicit transfer

中图分类号: 

  • TP391
[1]DING J L,YANG C,JIN Y C,et al.Generalized multitasking for evolutionary optimization of expensive problems[J].IEEE Transactions on Evolutionary Computation,2019,23(1):44-58.
[2]THEIL H.A rank-invariant method of linear and polynomial re-gression analysis[J].Advanced Studies in Theoretical and Applied Econometrics,1992,23:345-381.
[3]KOURAKOS G,MANTOGLOU A.Pumping optimization ofcoastal aquifers based on evolutionary algorithms and surrogate modular neural network models[J].Advances in Water Resources,2009,32(4):507-521.
[4]BUCHE D,SCHRAUDOLPH N,KOUMOUTSAKOS P.Acce-lerating evolutionary algorithms with gaussian process fitness function models[J].IEEE Transactions on Systems,Man and Cybernetics Part C:Applications and Reviews,2005,35(2):183-194.
[5]GONZALEZ J,ROJAS I,ORTEGA J,et al.Multiobjective evolutionary optimization of the size,shape,and position parameters of radial basis function networks for function approximation[J].IEEE Transactions on Neural Networks,2003,14(6):1478-1495.
[6]JIN Y C.Surrogate-assisted evolutionary computation:Recentadvances and future challenges[J].Swarm and Evolutionary Computation,2011,1(2):61-70.
[7]HAFTKA R T,VILLANUEVA D,CHAUDHURI A.Parallel surrogate-assisted global optimization with expensive functions--a survey[J].Structural and Multidisciplinary Optimization,2016,54:3-13.
[8]VINCENZI L,GAMBARELLI P.A proper infill sampling stra-tegy for improving the speed performance of a surrogate-assisted evolutionary algorithm[J].Computers and Structures,2017,178:58-70.
[9]TIAN J,TAN Y,ZENG J C,et al.Multiobjective infill criterion driven gaussian process-assisted particle swarm optimization of high-dimensional expensive problems[J].IEEE Transactions on Evolutionary Computation,2019,23(3):459-472.
[10]GOH C K,LIM D,MA L,et al.A surrogate-assisted memeticco-evolutionary algorithm for expensive constrained optimization problems[C]//2011 IEEE Congress of Evolutionary Computation(CEC).2011:744-749.
[11]LE M N,ONG Y S,MENZEL S,et al.Evolution by adapting surrogates[J].Evolutionary Computation,2013,21(2):313-340.
[12]YU H B,TAN Y,SUN C L,et al.A generation-based optimal restart strategy for surrogate-assisted social learning particle swarm optimization[J].Knowledge-Based Systems,2019,163:14-25.
[13]LI F,CAI X W,GAO L,et al.A surrogate-assisted multiswarm optimization algorithm for high-dimensional computationally expensive problems[J].IEEE Transactions on Cybernetics,2021,51(3):1390-1402.
[14]ZHOU Z Z,ONG Y S,NAIR P.Hierarchical surrogate-assisted evolutionary optimization framework[C]//Proceedings of the 2004 Congress on Evolutionary Computation.2004:1586-1593.
[15]LIM D,JIN Y C,ONG Y S,et al.Generalizing surrogate-assisted evolutionary computation[J].IEEE Transactions on Evolutionary Computation,2010,14(3):329-355.
[16]SUN C L,JIN Y C,ZENG J C,et al.A two-layer surrogate-assisted particle swarm optimization algorithm[J].Soft Computing,2015,19:1461-1475.
[17]YU H B,TAN Y,ZENG J C,et al.Surrogate-assisted hierarchical particle swarm optimization[J].Information Sciences,2018,454-455:59-72.
[18]BALI K K,GUPTA A,FENG L,et al.Linearized domain adaptation in evolutionary multitasking[C]//2017 IEEE Congress on Evolutionary Computation(CEC).2017:1295-1302.
[19]WEN Y W,TING C K.Parting ways and reallocating resources in evolutionary multitasking[C]//2017 IEEE Congress on Evolutionary Computation(CEC).2017:2404-2411.
[20]LIAW R T,TING C K.Evolutionary many-tasking based onbiocoenosis through symbiosis:A framework and benchmark problems[C]//2017 IEEE Congress on Evolutionary Computation(CEC).2017:2266-2273.
[21]LI G H,ZHANG Q F,GAO W F.Multipopulation evolution framework for multifactorial optimization[C]//Genetic and Evolutionary Computation Conference.Association for Computing Machinery,2018:215-216.
[22]MIN A T W,ONG Y S,GUPTA A,et al.Multiproblem surrogates:Transfer evolutionary multiobjective optimization of computationally expensive problems[J].IEEE Transactions on Evolutionary Computation,2019,23(1):15-28.
[23]GUPTA A,ONG Y S.Genetic transfer or population diversification? deciphering the secret ingredients of evolutionary multitask optimization[C]//2016 IEEE Symposium Series on Computational Intelligence(SSCI).2016:1-7.
[24]KATTAN A,GALVAN E.Evolving radial basis function networks via GP for estimating fitness values using surrogate mo-dels[C]//2012 IEEE Congress on Evolutionary Computation.2012:1-7.
[25]WILD S M,SHOEMAKER C A.Global convergence of radial basis function trust region derivative-free algorithms[J].SIAM Journal of Optimization,2011,21(3):761-781.
[26]WILD S M,SHOEMAKER C A.Global convergence of radial basis function trust region algorithms for derivative-free optimization[J].SIAM Rev,2013,55(2):349-371.
[27]DING J L,YANG C,JIN Y C,et al.Generalized multitasking for evolutionary optimization of expensive problems[J].IEEE Transactions on Evolutionary Computation,2019,23(1):44-58.
[28]LIAO P,SUN C L,ZHANG G C,et al.Multi-surrogate multi-tasking optimization of expensive problems[J].Knowledge-Based Systems,2021,551:23-38.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!