计算机科学 ›› 2024, Vol. 51 ›› Issue (5): 232-241.doi: 10.11896/jsjkx.240200027
刘洋1, 刘康2, 王永全1
LIU Yang1, LIU Kang2, WANG Yongquan1
摘要: 针对目标函数中包含耦合函数H(x,y)的非凸非光滑极小化问题,提出了一种线性惯性交替乘子方向法(Linear Inertial Alternating Direction Method of Multipliers,LIADMM)。为了方便子问题的求解,对目标函数中的耦合函数H(x,y)进行线性化处理,并在x-子问题中引入惯性效应。在适当的假设条件下,建立了算法的全局收敛性;同时引入满足 Kurdyka-Łojasiewicz 不等式的辅助函数,验证了算法的强收敛性。通过两个数值实验表明,引入惯性效应的算法比没有惯性效应的算法收敛性能更好。
中图分类号:
[1]BOYD S,PARIKH N,CHU E,et al.Distributed Optimization and statistical learning via the alternating direction method of multipliers[J].Foundations and Trends in Machine learning,2011,3(1):1-122. [2]HE B,YUAN X.On the O(1/n) Convergence Rate of theDouglas-Rachford Alternating Direction Method[J].SIAM Journal on Numerical Analysis,2012,50(2):700-709. [3]HE B S,HOU L S,YUAN X M.On Full Jacobian Decomposition of the Augmented Lagrangian Method for Separable Convex Programming[J].SIAM Journal on Optimization,2015,25(4):2274-2312. [4]YANG W H,HAN D.Linear Convergence of the AlternatingDirection Method of Multipliers for a Class of Convex Optimization Problems[J].SIAM Journal on Numerical Analysis,2016,54(2):625-640. [5]WANG F,CAO W,XU Z B.Convergence of Multi-block Breg-man ADMM for Nonconvex Composite Problems[J].Science China Information Sciences,2018,61(12):122101. [6]GUO K,HAN D.Convergence of alternating direction methodfor minimizing sum of two nonconvex functions with linear constraints[J].International Journal of Computer Mathematics,2017,94(8):1653-1669. [7]YANG L,PONG T K,CHEN X.Alternating Direction Method of Multipliers for A Class of Nonconvex and Nonsmooth Pro-blems with Applications to Background/Foreground Extraction[J].SIAM Journal on Imaging Sciences,2017,10(1):74-110. [8]ALVAREZ F,ATTOUCH H.An Inertial Proximal Method for MaximalMonotone Operators via Discretization of a Nonlinear Oscillator with Damping[J].Set Valued Analysis,2001,9(1/2):3-11. [9]DANG Y,SUN J,XU H.Inertial accelerated algorithms for solving asplit feasibility problem[J].Journal of Industrial and Management Optimization,2016,13(3):78-78. [10]CHEN C,CHAN R H,MA S Q,et al.Inertial Proximal ADMM for Linearly Constrained Separable Convex Optimization[J].Siam Journal onImaging Sciences,2015,8(4):2239-2267. [11]BOT R I.An Inertial Alternating Direction Method of Multi-pliers[J].Optimization and Control,2014,9(7):1404-1425. [12]YANG Y,TANG Y C.An Inertial Alternating Direction Me-thod of Multipliers for Solving a Two-Block Separable Convex Minimization Problem[J].Journal of Mathematical Research with Applications,2021,41(2):204-220. [13]CHEN C,LI M,LIU X,et al.Extended ADMM and BCD forNonseparable Convex Minimization models with Quadratic Coupling Terms[J].Mathematical Programming:Series A and B,2019,173:37-77. [14]GUO K,WANG X.Convergence of Generalized Alternating Direction Method of Multipliers for Nonseparable Nonconvex Objective with Linear Constraints[J].Journal of Mathematical Research with Applications,2018,38(5):87-104. [15]CHAO M,DENG Z,JIAN J.Convergence of Linear BregmanADMM for Nonconvex and Nonsmooth Problems with Nonseparable Structure[J].Complexity,2020,2020:6237942. [16]ZHANG Y X.HE S N.Inertial proximal alternating minimization fornonconvex and nonsmooth problems[J].Journal of Inequalities and Applications,2017(1):1-13. [17]ATTOUCH H,BOLTE H,REDONT P,et al.Proximal Alternating Minimization and Projection Methods for Nonconvex Problems:An ApproachBased on the Kurdyka-Lojasiewicz Inequality[J].Mathematics of Operations Research,2010,35(2):438-457. [18]BOT R I.CSETNEK E R,NGUYEN D K.A proximal minimization algorithm for structured nonconvex and nonsmooth pro-blems[J].SIAMJ.OPTIM,2020,29(2):1300-1328. [19]BOLTE J,SABACH S,TEBOULLU M.Proximal alternating linearized minimizationfor nonconvex and nonsmooth problems [J].Mathematical Programming,2014,146(1/2):459-494. [20]BAUSCHKE H H,COMBETTES P L.Convex Analysis andMonotone Oper-23ator Theory in Hilbert Spacel[M].Springer,New York,2011. [21]BOT R I.CSETNEK E R.An Inertial Tseng's Type Proximal Algorithm241 for Nonsmooth and Nonconvex Optimization Problems[J].Journal of Optimization Theory and Applications,2016,171(2):600-616. [22]ZENG L,XIE J.Group variable selection via SCAD-L 2[J].Statistics,2014,48(1):49-66. |
|