计算机科学 ›› 2024, Vol. 51 ›› Issue (6A): 230800081-6.doi: 10.11896/jsjkx.230800081

• 人工智能 • 上一篇    下一篇

融合证据句子提取的文档级关系抽取

安先跨, 肖蓉, 杨肖   

  1. 湖北大学计算机与信息工程学院 武汉 430062
  • 发布日期:2024-06-06
  • 通讯作者: 肖蓉(20040363@hubu.edu.cn)
  • 作者简介:(202221116012800@stu.hubu.edu.cn)
  • 基金资助:
    科技大数据湖北省重点实验室(中国科学院武汉文献情报中心)开放基金课题资助项目(E1KF291005)

Document-level Relation Extraction Integrating Evidence Sentence Extraction

AN Xiankua, XIAO Rong, YANG Xiao   

  1. School of Computer and Information Engineering,Hubei University,Wuhan 430062,China
  • Published:2024-06-06
  • About author:AN Xiankua,born in 2000,postgra-duate.His main research interests include natural language processing and relation extraction.
    XIAO Rong,born in 1980,Ph.D,lectu-rer.Her main research interests include natural language processing and relation extraction.
  • Supported by:
    Hubei Key Laboratory of Big Data in Science and Technology(Wuhan Library of Chinese Academy of Science)(E1KF291005)

摘要: 文档级关系抽取作为自然语言处理领域的一个关键任务,旨在从长文档中准确抽取实体对之间的语义关系。传统的文档级关系抽取方法通常将整个文档作为输入,但事实上,人类只需根据文档中的部分句子即可预测实体对的关系,即证据句子。在现有研究中,很多研究方法都利用了证据句子,但是都存在无法找全以及很难充分利用这些证据句子的优势等问题。针对该问题,引入更加高效且准确的证据句子选取方法,通过融合公式法和删句法的证据句子提取策略,并将证据提取与训练推理过程相融合,使得文档级关系抽取模型更加关注重要的句子,同时仍可以识别文档中的完整信息。实验表明,改进后的模型在公共数据集上的表现优于已有模型。

关键词: 文档级, 关系抽取, 证据句子, 双线性层

Abstract: As a crucial task in the field of natural language processing,document-level relation extraction aims to accurately extract semantic relationships between entities from lengthy documents.Traditional document-level relation extraction methods ty-pically take the entire document as input.However,in reality,humans can predict relationships between entity pairs based on only a portion of the document,referred to as evidence sentences.In existing research,many methods start to utilize evidence sentences,but they face challenges such as incomplete evidence retrieval and difficulty in fully leveraging the advantages of these evidence sentences.To address this issue,we introduce a more efficient and accurate evidence sentence selection method.This is achieved by integrating a strategy for extracting evidence sentences through a fusion of formula-based and sentence-deletion-based approaches.We seamlessly integrate the evidence extraction with the training and inference processes,directing the document-le-vel relation extraction model to focus more on crucial sentences while still recognizing comprehensive information within the document.Experimental results demonstrate that the improved model outperforms existing models on public datasets.

Key words: Document-level, Relation extraction, Evidence sentences, Bilinear layer

中图分类号: 

  • TP391
[1]RUMELHART D E,HINTON G E,WILLIAMS R J.Learning Internal Representations by Error Propagating[J].Nature,1986,323(6088):533-536.
[2]HOCHREITER S,SCHMIDHUBER J.Long short-term memory[J].Neural computation,1997,9(8):1735-1780.
[3]CHO K,VAN MERRIENBOER B,GULCEHRE C,et al.Lear-ning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation[J].arXiv:1406.1078,2014.
[4]NIU Z,ZHONG G,YU H.A review on the attention mechanism of deep learning[J].Neurocomputing,2021,452:48-62.
[5]YAO Y,YE D,LI P,et al.DocRED:A large-scale document-le-vel relation extraction dataset[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics.2019:764-777.
[6]HUANG K,QI P,WANG G,et al.Entity and evidence guided document-level relation extraction[C]//Proceedings of the 6th Workshop on Representation Learning for NLP(RepL4NLP-2021).2021:307-315.
[7]XIE Y,SHEN J,LI S,et al.Eider:Empowering Document-level Relation Extraction with Efficient Evidence Extraction and Inference-stage Fusion[C]//Findings of the Association for Computational Linguistics.2022:257-268.
[8]XU W,CHEN K,MOU L,et al.Document-level relation extraction with sentences importance estimation and focusing[C]//Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies.2022:2920-2929.
[9]ZHU T J,LU J C,ZHOU G,et al.A Survey of Document-level Relation Extraction Techniques[J].Computer Science,2023,50(5):189-200.
[10]CAI R,ZHANG X,WANG H.Bidirectional recurrent convolutional neural network for relation classification[C]//Procee-dings of the 54th Annual Meeting of the Association for Computational Linguistics(Volume 1:Long Papers).2016:756-765.
[11]YANG C N,PENG D L.A Document-level Entity Relation Extraction Model Integrating BSRU and Capsule Network[J].Journal of Miniaturized Computer Systems,2022,43(5):964-968.
[12]VASWANI A,SHAZEER N,PARMARN,et al.Attention is allyou need[J].Advances in Neural Information Processing Systems,2017,30:6000-6010.
[13]DEVLIN J,CHANG M W,LEE K,et al.Bert:Pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies,Volume 1(Long and Short Papers).2019:4171-4186.
[14]ZHOU W,HUANG K,MA T,et al.Document-level relation extraction with adaptive thresholding and localized context pooling[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2021:14612-14620.
[15]CHRISTOPOULOU F,MIWA M,ANANIADOU S.Connec-ting the dots:Document-level neural relation extraction with edge-oriented graphs[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing(EMNLP-IJCNLP).2019:4925-4936.
[16]XU W,CHEN K,ZHAO T.Document-level relation extraction with reconstruction[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2021:14167-14175.
[17]ZENG S,XU R,CHANG B,et al.Double graph based reasoning for document-level relation extraction[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing(EMNLP).2020:1630-1640.
[18]HUANG Q,ZHU S,FENG Y,et al.Three sentences are all you need:Local path enhanced document relation extraction[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing(Volume 2:Short Papers).2021:998-1004.
[19]WANG H,QIN K,LU G,et al.Document-level relation extraction using evidence reasoning on RST-GRAPH[J].Knowledge-Based Systems,2021,228:107274.
[20]WOLF T,DEBUT L,SANHV,et al.Huggingface’ s transformers:State-of-the-art natural language processing[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing:System Demonstrations.2020:38-45.
[21]LOSHCHILOV I,HUTTER F.Fixing weight decay regularization in adam[J].arXiv:1711.05101,2019.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!