计算机科学 ›› 2024, Vol. 51 ›› Issue (6A): 230800081-6.doi: 10.11896/jsjkx.230800081
安先跨, 肖蓉, 杨肖
AN Xiankua, XIAO Rong, YANG Xiao
摘要: 文档级关系抽取作为自然语言处理领域的一个关键任务,旨在从长文档中准确抽取实体对之间的语义关系。传统的文档级关系抽取方法通常将整个文档作为输入,但事实上,人类只需根据文档中的部分句子即可预测实体对的关系,即证据句子。在现有研究中,很多研究方法都利用了证据句子,但是都存在无法找全以及很难充分利用这些证据句子的优势等问题。针对该问题,引入更加高效且准确的证据句子选取方法,通过融合公式法和删句法的证据句子提取策略,并将证据提取与训练推理过程相融合,使得文档级关系抽取模型更加关注重要的句子,同时仍可以识别文档中的完整信息。实验表明,改进后的模型在公共数据集上的表现优于已有模型。
中图分类号:
[1]RUMELHART D E,HINTON G E,WILLIAMS R J.Learning Internal Representations by Error Propagating[J].Nature,1986,323(6088):533-536. [2]HOCHREITER S,SCHMIDHUBER J.Long short-term memory[J].Neural computation,1997,9(8):1735-1780. [3]CHO K,VAN MERRIENBOER B,GULCEHRE C,et al.Lear-ning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation[J].arXiv:1406.1078,2014. [4]NIU Z,ZHONG G,YU H.A review on the attention mechanism of deep learning[J].Neurocomputing,2021,452:48-62. [5]YAO Y,YE D,LI P,et al.DocRED:A large-scale document-le-vel relation extraction dataset[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics.2019:764-777. [6]HUANG K,QI P,WANG G,et al.Entity and evidence guided document-level relation extraction[C]//Proceedings of the 6th Workshop on Representation Learning for NLP(RepL4NLP-2021).2021:307-315. [7]XIE Y,SHEN J,LI S,et al.Eider:Empowering Document-level Relation Extraction with Efficient Evidence Extraction and Inference-stage Fusion[C]//Findings of the Association for Computational Linguistics.2022:257-268. [8]XU W,CHEN K,MOU L,et al.Document-level relation extraction with sentences importance estimation and focusing[C]//Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies.2022:2920-2929. [9]ZHU T J,LU J C,ZHOU G,et al.A Survey of Document-level Relation Extraction Techniques[J].Computer Science,2023,50(5):189-200. [10]CAI R,ZHANG X,WANG H.Bidirectional recurrent convolutional neural network for relation classification[C]//Procee-dings of the 54th Annual Meeting of the Association for Computational Linguistics(Volume 1:Long Papers).2016:756-765. [11]YANG C N,PENG D L.A Document-level Entity Relation Extraction Model Integrating BSRU and Capsule Network[J].Journal of Miniaturized Computer Systems,2022,43(5):964-968. [12]VASWANI A,SHAZEER N,PARMARN,et al.Attention is allyou need[J].Advances in Neural Information Processing Systems,2017,30:6000-6010. [13]DEVLIN J,CHANG M W,LEE K,et al.Bert:Pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies,Volume 1(Long and Short Papers).2019:4171-4186. [14]ZHOU W,HUANG K,MA T,et al.Document-level relation extraction with adaptive thresholding and localized context pooling[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2021:14612-14620. [15]CHRISTOPOULOU F,MIWA M,ANANIADOU S.Connec-ting the dots:Document-level neural relation extraction with edge-oriented graphs[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing(EMNLP-IJCNLP).2019:4925-4936. [16]XU W,CHEN K,ZHAO T.Document-level relation extraction with reconstruction[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2021:14167-14175. [17]ZENG S,XU R,CHANG B,et al.Double graph based reasoning for document-level relation extraction[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing(EMNLP).2020:1630-1640. [18]HUANG Q,ZHU S,FENG Y,et al.Three sentences are all you need:Local path enhanced document relation extraction[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing(Volume 2:Short Papers).2021:998-1004. [19]WANG H,QIN K,LU G,et al.Document-level relation extraction using evidence reasoning on RST-GRAPH[J].Knowledge-Based Systems,2021,228:107274. [20]WOLF T,DEBUT L,SANHV,et al.Huggingface’ s transformers:State-of-the-art natural language processing[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing:System Demonstrations.2020:38-45. [21]LOSHCHILOV I,HUTTER F.Fixing weight decay regularization in adam[J].arXiv:1711.05101,2019. |
|