计算机科学 ›› 2024, Vol. 51 ›› Issue (6A): 230600158-6.doi: 10.11896/jsjkx.230600158
尹宝生, 孔维一
YIN Baosheng, KONG Weiyi
摘要: 事件检测是信息提取领域的一个重要研究方向。现存的事件检测模型受到语言模型训练目标的限制,只能被动地获取词与词之间的依赖关系,使得模型在训练的过程中过多地关注与训练目标不相关的成分,从而导致检测结果错误。以往的研究表明,充分理解上下文信息对于基于深度学习的事件检测技术至关重要。因此,在Electra预训练模型的基础上,引入KVMN网络来捕捉单词之间的依赖关系,以增强单词的语义特征,并采用了一种门控机制来加权这些特征。然后,为了解决中文事件检测中模型识别错误决策的问题,在输入中加入负样本,对不同样本加入不同程度的噪声,使模型学习更好的嵌入表示,有效提高了模型对未知样本的泛化能力。最后,在公共数据集LEVEN上的实验结果表明,该方法优于现有方法,取得了93.43%的F1值。
中图分类号:
[1]DAI J H,PENG R Y,XU L,et al.A Review of Information Extraction Based on Deep Neural Networks[J].Journal of Southwest Normal University(Natural Science Edition),2022,47(4):1-11. [2]LIU P,WEI H Z,LU X L,et al.Constructing a Mine Disaster Event Detection Model Based on a New Convolutional Neural Network[J].Journal of Chinese Information Science,2020,34(10):59-68. [3]LI R,ZHAO W,YANG C,et al.Treasures outside contexts:Improving event detection via global statistics[C]//Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing.2021:2625-2635. [4]LIU X,HUANG H,SHI G,et al.Dynamic prefix-tuning forgenerative template-based event extraction[J].arXiv:2205.06166,2022. [5]MIKOLOV T,SUTSKEVER I,CHEN K,et al.Distributed representations of words and phrases and their compositionality[J].arXiv:1310.4546,2013. [6]BARBANO C A,DUFUMIER B,TARTAGLIONE E,et al.Unbiased Supervised Contrastive Learning[J].arXiv:2211.05568,2022. [7]GU S,CHU Y,ZHANG W,et al.Research on System Log Anomaly Detection Combining Two-way Slice GRU and GA-Attention Mechanism[C]//2021 4th International Conference on Artificial Intelligence and Big Data(ICAIBD).IEEE,2021:577-583. [8]LIU W,NGUYEN T H.Similar but not the same:Word sense disambiguation improves event detection via neural representation matching[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing.2018:4822-4828. [9]LIU J,CHEN Y,LIU K,et al.Event detection via gated multilingual attention mechanism[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2018. [10]LUO R Y,CHEN J F,YIN X X.A review of the application of machine learning in automatic detection of earthquake events[J].Advances in Geophysics,2021,36(3):923-932. [11]TONG M,WANG S,CAO Y,et al.Image enhanced event detection in news articles[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2020:9040-9047. [12]LU Y,LIN H,HAN X,et al.Distilling discrimination and generalization knowledge for event detection via delta-representation learning[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics.2019:4366-4376. [13]TONG M,XU B,WANG S,et al.Improving event detection via open-domain event trigger knowledge[C]//Association for Computational Linguistics.2020. [14]NGUYEN T H,GRISHMAN R.Event detection and domainadaptation with convolutional neural networks[C]//Procee-dings of the 53rd Annual Meeting of the Association for Computa-tional Linguistics and the 7th International Joint Conference on Natural Language Processing(Volume 2:Short Papers).2015:365-371. [15]CHEN Y,XU L,LIU K,et al.Event extraction via dynamic multi-pooling convolutional neural networks[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing(Volume 1:Long Papers).2015:167-176. [16]NGUYEN T H,CHO K,GRISHMAN R.Joint event extraction via recurrent neural networks[C]//Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies.2016:300-309. [17]ZHU P P,WANG Z Q,LI S S,et al.Chinese Event Detection based on Text Information and Bi-GRU[J].Computer Science,2020,47(12):233-238. [18]YAO F,XIAO C,WANG X,et al.LEVEN:A Large-Scale Chinese Legal Event Detection Dataset[J].arXiv:2203.08556,2022. [19]LI X,LI F,PAN L,et al.DuEE:a large-scale dataset for Chinese event extraction in real-world scenarios[C]//CCF International Conference on Natural Language Processing and Chinese Computing.Cham:Springer,2020:534-545. [20]DEVLIN J,CHANG M W,LEE K,et al.Bert:Pre-training of deep bidirectional transformers for language understanding[J].arXiv:1810.04805,2018. [21]HSU I H,HUANG K H,BOSCHEE E,et al.DEGREE:A data-efficient generation-based event extraction model[C]//Procee-dings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies.2022:1890-1908. [22]WU C,WU F,QI T,et al.NoisyTune:A Little Noise Can Help You Finetune Pretrained Language Models Better[J].arXiv:2202.12024,2022. [23]TESNIÈRE L.Elements of structural syntax[M].John Benjamins Publishing Company,2015. [24]CHEN Y,YANG H,LIU K,et al.Collective event detection via a hierarchical and bias tagging networks with gated multi-level attention mechanisms[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing.2018:1267-1276. [25]TIAN Y,CHEN G,SONG Y.Enhancing aspect-level sentiment analysis with word dependencies[C]//Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics:Main Volume.2021:3726-3739. [26]WANG X,WANG Z,HAN X,et al.MAVEN:A massivegene-ral domain event detection dataset[J].arXiv:2004.13590,2020. [27]DU X,CARDIE C.Event extraction by answering(almost) natural questions[J].arXiv:2004.13625,2020. [28]YU P,JI H,NATARAJAN P.Lifelong event detection withknowledge transfer[C]//Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing.2021:5278-5290. [29]LU Y,LIU Q,DAI D,et al.Unified Structure Generation forUniversal Information Extraction[J].arXiv:2203.12277,2022. [30]CLARK K,LUONG M T,LE Q V,et al.Electra:Pre-training text encoders as discriminators rather than generators[J].arXiv:2003.10555,2020. [31]YANG Z,DAI Z,YANG Y,et al.XLNet:Generalized Autoregressive Pretraining for Lanuage Understanding[J].arXiv:1906.08237. [32]XIAO C,HU X,LIU Z,et al.Lawformer:A Pre-trained Language Model for Chinese Legal Long Documents[J].arXiv:2003.10555,2020. |
|