计算机科学 ›› 2024, Vol. 51 ›› Issue (6A): 230600170-5.doi: 10.11896/jsjkx.230600170
李东阳, 聂仁灿, 潘琳娜, 李贺
LI Dongyang, NIE Rencan, PAN Linna, LI He
摘要: 在具有挑战性的拍摄环境中,使用单张红外或可见光图像很难捕获清晰详细的纹理信息以及热辐射信息。然而,红外和可见光图像融合允许保存来自红外图像的热辐射信息和来自可见光图像的纹理细节。现有的许多方法在融合过程中直接生成融合图像,忽略了对源图像像素级权重贡献的估计,强调了不同源图像之间的学习。为此,提出了基于无监督显著性掩码引导的红外与可见光图像融合网络,利用密集结构在源图像中进行全面的特征提取。它产生一个权重估计概率来评估每个源图像对融合图像的贡献。此外,由于红外与可见光图像缺乏真实标签,难以使用有监督学习,UMGN还引入了显著性掩码,便于网络集中学习红外图像的热辐射信息和可见光纹理信息。在训练过程中还引入了加权保真度项和梯度损失,以防止梯度退化。与大量其他最先进的方法进行对比实验,结果证明了所提出的UMGN方法的优越性和有效性。
中图分类号:
[1]WEI Q,ZHAO J.Research Progress of Infrared and Visible Image Fusion Algorithms[J].Computer Science,2023,50(2):11. [2]ZHOU Z,WANG B,LI S,et al.Perceptual fusion of infrared and visible images through a hybrid multi-scale decomposition with Gaussian and bilateral filters[J].Information Fusion,2016,30:15-26. [3]ZHANG Q,LEVINE M D,et al.Robust Multi-Focus Image Fusion Using Multi-Task Sparse Representation and Spatial Context[J].IEEE Transactions on Image Processing,2016,25(5):2045-2058. [4]FU Z,WANG X,XU J,et al.Infrared and visible images fusion based on RPCA and NSCT[J].Infrared Physics & Technology,2016,77:114-123. [5]LI H,WU X J.DenseFuse:A fusion approach to infrared and visible images[J].IEEE Transactions on Image Processing,2018,28(5):2614-2623. [6]ZHU D,ZHAN W,JIANG Y,et al.IPLF:A novel image pair learning fusion network for infrared and visible image[J].IEEE Sensors Journal,2022,22(9):8808-8817. [7]MA J,ZHANG H,SHAO Z,et al.GANMcC:A generative adversarial network with multiclassification constraints for infrared and visible image fusion[J].IEEE Transactions on Instrumentation andMeasurement,2020,70:1-14. [8]XU H,GONG M,TIAN X,et al.CUFD:An encoder-decoder network for visible and infrared image fusion based on common and unique feature decomposition[J].Computer Vision and Image Understanding,2022,218:103407. [9]ZHANG G,NIE R,CAO J.SSL-WAEIE:Self-Supervised Lear-ning with Weighted Auto-Encoding and Information Exchange for Infrared and Visible Image Fusion[J].IEEE/CAA Journal of Automatica Sinica,2022,9(9):1694-1697. [10]TANG L,YUAN J,ZHANG H,et al.PIAFusion:A progressive infrared and visible image fusion network based on illumination aware[J].Information Fusion,2022,83:79-92. [11]LI H,WU X J.Infrared and visible image fusion using latent low-rank representation[J].arXiv:180408992,2018. [12]MA J,CHEN C,LI C,et al.Infrared and visible image fusion via gradient transfer and total variation minimization[J].Information Fusion,2016,31:100-109. [13]GAO Y H,LUO X Q,ZHANG Z C.Infrared and Visible Image Fusion Based on Feature Separation[J].Computer Science,2022,49(5). [14]LI G,QIAN X,QU X.SOSMaskFuse:An Infrared and Visible Image Fusion Architecture Based on Salient Object Segmentation Mask[J].IEEE Transactions on Intelligent Transportation Systems,2023,24(9):10118-10137. [15]ZHANG J,SCLAROFF S.Saliency detection:A boolean map approach[C]//Proceedings of the IEEE International Conference on Computer Vision.2013:153-160. [16]GUO X,NIE R,CAO J,et al.FuseGAN:Learning to fuse multi-focus image via conditional generative adversarial network[J].IEEE Transactions on Multimedia,2019,21(8):1982-1996. [17]LI S,HONG R,WU X.A novel similarity based quality metric for image fusion[C]//Proceedings of the 2008 International Conference on Audio,Language and Image Processing.IEEE,2008. [18]XYDEAS C S,PETROVIC V.Objective image fusion performance measure[J].Electronics letters,2000,36(4):308-309. [19]PIELLA G,HEIJMANS H.A new quality metric for image fusion[C]//Proceedings of the Proceedings 2003 international conference on image processing(Cat No 03CH37429).IEEE,2003. |
|