计算机科学 ›› 2024, Vol. 51 ›› Issue (6A): 230600170-5.doi: 10.11896/jsjkx.230600170

• 图像处理&多媒体技术 • 上一篇    下一篇

基于无监督显著性掩码引导的红外与可见光图像融合网络

李东阳, 聂仁灿, 潘琳娜, 李贺   

  1. 云南大学信息学院 昆明 650091
  • 发布日期:2024-06-06
  • 通讯作者: 聂仁灿(rcnie@ynu.edu.cn)
  • 作者简介:(dongyang_li@mail.ynu.edu.cn)
  • 基金资助:
    国家自然科学基金(61966037);云南省基础研究计划重点项目(202301AS070025,202401AT070467);国家重点研发项目(2020YFA0714301);云南省科技厅项目基金(2012105AF150011)

UMGN:An Infrared and Visible Image Fusion Network Based on Unsupervised Significance MaskGuidance

LI Dongyang, NIE Rencan, PAN Linna, LI He   

  1. School of Information Science and Engineering,Yunnan University,Kunming 650091,China
  • Published:2024-06-06
  • About author:LI Dongyang,born in 1997,postgra-duate.His main research interests include deep learning and image fusion.
    NIE Rencan,born in 1982,Ph.D,professor,doctoral supervisor.His main research interests include neural networks,image processing and machine learning.
  • Supported by:
    National Natural Science Foundation of China(61966037),Key Project of Yunnan Basic Research Program(202301AS070025,202401AT070467),National Key Research and Development Program of China(2020YFA0714301) and Science and Technology Department of Yunnan Province Project Fundation(202105AF150011).

摘要: 在具有挑战性的拍摄环境中,使用单张红外或可见光图像很难捕获清晰详细的纹理信息以及热辐射信息。然而,红外和可见光图像融合允许保存来自红外图像的热辐射信息和来自可见光图像的纹理细节。现有的许多方法在融合过程中直接生成融合图像,忽略了对源图像像素级权重贡献的估计,强调了不同源图像之间的学习。为此,提出了基于无监督显著性掩码引导的红外与可见光图像融合网络,利用密集结构在源图像中进行全面的特征提取。它产生一个权重估计概率来评估每个源图像对融合图像的贡献。此外,由于红外与可见光图像缺乏真实标签,难以使用有监督学习,UMGN还引入了显著性掩码,便于网络集中学习红外图像的热辐射信息和可见光纹理信息。在训练过程中还引入了加权保真度项和梯度损失,以防止梯度退化。与大量其他最先进的方法进行对比实验,结果证明了所提出的UMGN方法的优越性和有效性。

关键词: 无监督学习, 显著性掩码, 权重估计概率, 红外与可见光图像融合

Abstract: In challenging shooting environments,it is difficult to capture clear and detailed texture information and thermal radiation information using a single infrared or visible image.However,infrared and visible image fusion allows the preservation of thermal radiation information in infrared images and texture details in visible light images.Many existing methods directly generate fused images in the fusion process,ignore the estimation of pixel-level weight contribution of source images,and emphasize the learning between different source images.For this reason,an infrared and visible image fusion based on unsupervised significance mask guidance network is proposed,which uses DenseNet structure to extract comprehensive features from source images.It produces a weight estimation probability to evaluate the contribution of each source image to the fused image.Since infrared and visible images lack ground truth,it is difficult to use supervised learning.UMGN also introduces the significance mask to facilitate the network to focus on learning the thermal radiation information and visible light texture information of infrared images.A weighted fidelity term and gradient loss are also introduced in the training process to prevent gradient degradation.A large number of comparative experiments with other advanced methods prove the superiority and effectiveness of the proposed UMGN method.

Key words: Unsupervised learning, Significance mask, Weight estimation probability, Infrared and visible image fusion

中图分类号: 

  • TP391
[1]WEI Q,ZHAO J.Research Progress of Infrared and Visible Image Fusion Algorithms[J].Computer Science,2023,50(2):11.
[2]ZHOU Z,WANG B,LI S,et al.Perceptual fusion of infrared and visible images through a hybrid multi-scale decomposition with Gaussian and bilateral filters[J].Information Fusion,2016,30:15-26.
[3]ZHANG Q,LEVINE M D,et al.Robust Multi-Focus Image Fusion Using Multi-Task Sparse Representation and Spatial Context[J].IEEE Transactions on Image Processing,2016,25(5):2045-2058.
[4]FU Z,WANG X,XU J,et al.Infrared and visible images fusion based on RPCA and NSCT[J].Infrared Physics & Technology,2016,77:114-123.
[5]LI H,WU X J.DenseFuse:A fusion approach to infrared and visible images[J].IEEE Transactions on Image Processing,2018,28(5):2614-2623.
[6]ZHU D,ZHAN W,JIANG Y,et al.IPLF:A novel image pair learning fusion network for infrared and visible image[J].IEEE Sensors Journal,2022,22(9):8808-8817.
[7]MA J,ZHANG H,SHAO Z,et al.GANMcC:A generative adversarial network with multiclassification constraints for infrared and visible image fusion[J].IEEE Transactions on Instrumentation andMeasurement,2020,70:1-14.
[8]XU H,GONG M,TIAN X,et al.CUFD:An encoder-decoder network for visible and infrared image fusion based on common and unique feature decomposition[J].Computer Vision and Image Understanding,2022,218:103407.
[9]ZHANG G,NIE R,CAO J.SSL-WAEIE:Self-Supervised Lear-ning with Weighted Auto-Encoding and Information Exchange for Infrared and Visible Image Fusion[J].IEEE/CAA Journal of Automatica Sinica,2022,9(9):1694-1697.
[10]TANG L,YUAN J,ZHANG H,et al.PIAFusion:A progressive infrared and visible image fusion network based on illumination aware[J].Information Fusion,2022,83:79-92.
[11]LI H,WU X J.Infrared and visible image fusion using latent low-rank representation[J].arXiv:180408992,2018.
[12]MA J,CHEN C,LI C,et al.Infrared and visible image fusion via gradient transfer and total variation minimization[J].Information Fusion,2016,31:100-109.
[13]GAO Y H,LUO X Q,ZHANG Z C.Infrared and Visible Image Fusion Based on Feature Separation[J].Computer Science,2022,49(5).
[14]LI G,QIAN X,QU X.SOSMaskFuse:An Infrared and Visible Image Fusion Architecture Based on Salient Object Segmentation Mask[J].IEEE Transactions on Intelligent Transportation Systems,2023,24(9):10118-10137.
[15]ZHANG J,SCLAROFF S.Saliency detection:A boolean map approach[C]//Proceedings of the IEEE International Conference on Computer Vision.2013:153-160.
[16]GUO X,NIE R,CAO J,et al.FuseGAN:Learning to fuse multi-focus image via conditional generative adversarial network[J].IEEE Transactions on Multimedia,2019,21(8):1982-1996.
[17]LI S,HONG R,WU X.A novel similarity based quality metric for image fusion[C]//Proceedings of the 2008 International Conference on Audio,Language and Image Processing.IEEE,2008.
[18]XYDEAS C S,PETROVIC V.Objective image fusion performance measure[J].Electronics letters,2000,36(4):308-309.
[19]PIELLA G,HEIJMANS H.A new quality metric for image fusion[C]//Proceedings of the Proceedings 2003 international conference on image processing(Cat No 03CH37429).IEEE,2003.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!