计算机科学 ›› 2024, Vol. 51 ›› Issue (6A): 230600179-8.doi: 10.11896/jsjkx.230600179
黄飞虎1,2, 李沛东2, 彭舰2, 董石磊1, 赵红磊1, 宋卫平1, 李强3
HUANG Feihu1,2, LI Peidong2, PENG Jian2, DONG Shilei1, ZHAO Honglei1, SONG Weiping1, LI Qiang3
摘要: 新型电力系统背景下,新能源发电商的报价问题一直是电力现货市场中的研究热点。相比传统能源,风电出力受外界不确定性因素的影响较大,给风力发电商求解最优报价带来了挑战。为此,基于多智能体强化学习算法WoLF-PHC构建了计及风电的发电商报价策略模型。模型中,考虑了风电、火电和水电3种能源参与的现货市场,每一个发电商抽象为一个智能体,且基于随机约束规划算法建模风电智能体的收益函数;对于智能体的报价策略模型,将D3QN与WoLF-PHC算法结合,使模型能够满足报价时智能体状态空间复杂的情况;此外,对于交互环境的建模,提出利用DDPM扩散模型生成风电出力数据,优化风电出清场景的仿真。最后,基于3节点的电力仿真系统开展模拟实验,实验结果表明,提出的风电收益函数建模、WoLF-PHC改进、风电出力生成等技术是可行的,能有效解决风电参与竞价的现货市场报价问题,并且能够在较少的迭代次数后学习到较优的策略。
中图分类号:
[1]WEN R,TAN L.Short-term Power Forecasting for Photovoltaic Generation Based on HS-ESN[J].Computer Science,2017,44(6):226-231,265. [2]LU C,JIANG T,DENG H,et al.Bidding Strategy and ProfitDistribution of Power Generation Company with Clean Energy in Spot Market Based on Cooperative Game Theory[J].Electric Power Construction,2020,41(12):9. [3]NING B.Analysis on generating cost of thermal p0wer plant and its pricing strategy[D].North China Electric Power University,2009. [4]ZHANG L.Cost Analysis and Bidding Strategy Research ofPower Plants under Power Market Environment[D].North China Electric Power University,2010. [5]WU J,WANG J,YAN Y.Agent-based dynamic simulation of an electricity market with multilateral bidding[J].International Journal of Modeling,Simulation,and Scientific Computing,2019,10(3):15-27. [6]YANG M.Research on bidding strategy of electricity marketbased on current trading mode[D].Beijing University of Posts and Telecommunications,2019. [7]WANG J,WU J,KONG X,Multi-agent simulation for strategic bidding in electricity markets using reinforcement learning[J].Power and Energy Systems,2020,9(3):1051-1065. [8]CHEN L,GUO T,LIU Y T,et al.Survey of Multi-Agent Stra-tegy Based on Reinforcement Learning[C]//2020 Chinese Control and Decision Conference(CCDC).2020:604-609. [9]DONG H,DONG H,DING Z,et al.Deep Reinforcement Lear-ning[M].Singapore:Springer,2020. [10]KONG D,KONG X,XIAO J,et al.Dynamic pricing of demand response based on elasticity transfer and reinforcement learning[C]//2019 22nd International Conference on Electrical Machines and Systems(ICEMS).IEEE,2019:1-5. [11]GAO Y,LI J,CAO R,et al.Simulation of Generators’ Bidding Behavior Based on Multi-agent Double DQN[J].Power System Technology,2020,44(11):4175-4183. [12]LIU D,GAO Y,WANG W,et al.Research on bidding strategy of thermal power companies in electricity market based on Multi-Agent Deep Deterministic Policy Gradient[J].IEEE access,2021,9:81750-81764. [13]TANG C,ZHANG L,LIU F,et al.Research on Pricing Mechanism of Electricity Spot Market Based on Multi-agent Reinforcement Learning(Part I):Bi-level Optimization Model for Generators Under Different Pricing Mechanisms[J].Proceedings of the CSEE,2021,41(2):536-552. [14]JIANG T,WANG X,JIANG C,et al.Optimal Hybrid Stochastic Robust Bidding Strategy of Wind and Hydraulic Pumped Storage Jointly Participating in Day-ahead and Real-time Market Using Data-driven Method[J].Power System Technology,2022,46(2):481-495. [15]DONG X,SUN Y,PU T.Day-ahead scenario generation of renewable energy based on conditional GAN[J].Proceedings of the CSEE,2020,40(17):5527-5536. [16]CHEN Y,WANG Y,KIRSCHEN D S,et al.Model-free renewable scenario generation using generative adversarial networks[J].IEEE Transactions on Power Systems,2017,33(99):3265-3275. [17]HO J,JAIN A,ABBEEL P.Denoising diffusion probabilisticmodels[J].Advances in Neural Information Processing Systems,2020,33:6840-6851. [18]YUAN W,LUO J,LU L,et al.Methods in Adversarial Intelligent Game:A Holistic Comparative Analysis from Perspective of Game Theory and Reinforcement Learning[J].Computer Science,2022,49(8):191-204. [19]QIN Z,LI N,LIU X,et al.Overview of Research on Model-free Reinforcement Learning[J].Computer Science,2021,48(3):180-187. [20]ZHANG X,GAO W,ZHONG J.Decentralized Economic Dis-patching of Multi-Micro Grid Considering Wind Power and Photovoltaic Output Uncertainty[J].IEEE Access,2021,9(104):93-103. [21]ZHANG L,TANG C,LIU F,et al.Research on Pricing Mechanism of Electricity Spot Market Based on Multi-Agent Reinforcement Learning(Part II):Decision-making Framework of Pricing Mechanism Combined With Theory and Simulation[J].Proceedings of the CSEE,2021,41(3):1004-1017. [22]CHEN Y,WANG Y,KIRSCHEN D S,et al.Model-free renewable scenario generation using generative adversarial networks[J].IEEE Transactions on Power Systems,2017,33(99):3265-3275. [23]JIANG C,MAO Y,CHAI Y,et al.Scenario generation for wind power using improved generative adversarial networks[J].IEEE Access,2018,6:62193-62203. [24]LIANG J,TANG W.Wind power scenario generation for microgrid day-ahead scheduling using sequential generative adversarial networks[C]//2019 IEEE International Conference on Communications,Control,and Computing Technologies for Smart Grids.2019:1-6. [25]WANG J,ZENG K,ZHANG J,et al.GAN-generated Face Detection Based on Space-Frequency Convolutional Neural Network[J].Computer Science,2023,50(6):216-224. [26]FENG H,HUANG C,FENG S,et al.Bidding Model of Generator Considering the Medium and Long-Term contract[C]//Proceedings of the 2019 Annual Meeting of the Power Market Committee of the Chinese Society of Electrical Engineering.2019:336-342. [27]XU B,ZHU F,ZHONG P,et al.Identifying long-term effects of using hydropower to complement wind power uncertainty through stochastic programming[J].Applied Energy.2019,253:113535. [28]WANG D,LIU B,JIA H,et al.Peer-to-Peer Energy Transaction Decision of Prosumers Based on Reinforcement Learning[J].Automation of Electric Power Systems,2021,45(3):139-147. [29]KONG D,KONG X,XIAO J,et al.Dynamic pricing of demand response based on elasticity transfer and reinforcement learning[C]//2019 22nd International Conference on Electrical Machines and Systems(ICEMS).2019:1-5. [30]HAN D,HUANG W,YAN Z.Deep Reinforcement Learning for Virtual Bidding in Electricity Markets[J].Proceedings of the CSEE,2022,42(4):1443-1455. |
|