计算机科学 ›› 2024, Vol. 51 ›› Issue (6A): 230600212-6.doi: 10.11896/jsjkx.230600212
吕一鸣, 王激扬
LYU Yiming, WANG Jiyang
摘要: 随着当今世界的飞速发展,各种高楼大厦林立,对于铁以及钢材的需求日益增加,随之而来的对于铁矿石的需求也逐年上涨,由于铁矿产业是对不可再生资源的开采,因此对铁矿石进行分类,提高铁矿石的利用效率就变得极其重要。为了提高铁矿石的分类速度以及分类准确率,文中提出了一种基于卷积神经网络和注意力机制的铁矿石图像分类方法。该方法不需要对输入的图像进行手工提取特征,通过深度学习模型框架来弥补传统图像处理算法的不足,实现对铁矿石准确、高效的分类,可以较好地识别多种类型的铁矿石。对于铁矿石的3种基本类型具有较好的分类效果以及准确率。实验结果证明,所提方法在数据集上的准确率达到88.46%,相比其他算法模型,其模型训练时间更短,性能更优。利用深度学习的方法,部署自动化铁矿石分类模型,对于社会发展有重要意义。
中图分类号:
[1]NIU F S,ZHANG Y,NIE Y M.Application of Image Processing Technology in Process Mineralogy Research[J].Metal Mine,2010(5):92-95,103. [2]GOMES O F M,IGLESIAS J C A,PACIORNIK S,et al.Classification of hematite types in iron ores through circularly polarized light microscopy and image analysis[J].Minerals Enginee-ring,2013,52:191-197. [3]IGLESIAS J C Á,AUGUSTO K S,GOMES O F M,et al.Automatic characterization of iron ore by digital microscopy andimage analysis[J].Journal of Materials Research and Technology,2018,7(3):376-380. [4]DELBEM I D,GALÉRY R,BRANDÃO P R G,et al.Semi-automated iron ore characterisation based on optical microscope analysis:quartz/resin classification[J].Minerals Engineering,2015,82:2-13. [5]MENGKO T R,SUSILOWATI Y,MENGKO R,et al.Digitalimage processing technique in rock forming minerals identification[C]//IEEE Asia-Pacific Conference on Circuits and Systems.Electronic Communication Systems.(Cat.No.00EX394)(APCCAS 2000).IEEE,2000:441-444. [6]YE R Q,NIU R Q,ZHANG L P,et al.Mineral Content Determination and Accuracy Evaluation Based on Image Classification[J].Journal of ChinaUniversity of Mining & Technology,2011,40(5):810-815. [7]LIU Y B,CAO S G,LIU Y C.Discussion on rock mesoimageanalysis method based on LS-SVM[J].Chinese Journal of Rock Mechanics and Engineering,2008(5):1059-1065. [8]LIU J X,TENG Q Z,WANG Z Y,et al.Classification of multi-feature fusion rocks based on co-representation[J].Computer Applications,2016(11):1894-1898. [9]PENG H X,XU H M,LIU H Y.Lightweight crop pest identification model based on improved ShuffleNet V2[J].Transactions of the Chinese Society of Agricultural Engineering,2022,38(11):161-170. [10]ZHANG X,ZHOU X,LIN M,et al.Shufflenet:An extremely efficient convolutional neural network for mobile devices[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:6848-6856. [11]LI L,QU H G,SUN J L.Face Image Quality Evaluation Method Based on ShuffleNet[J].Electronic Technology and Software Engineering,2021(7):132-135. [12]HONG H Q,HUANG F H.Crop diseaseidentification algorithm based on lightweight neural network[J].Journal of Shenyang Agricultural University,2021,52(2):239-245. [13]SUNIL C K,JAIDHAR C D,PATIL N.Cardamo Plant Disease Detection Approach Using EfficientNet V2[J].IEEE Access,2021,10:89-804. [14]LIU D,WANG W,WU X,et al.Efficient Netv2 Model forBreast Cancer Histopathological Image Classification[C]//2022 3rd International Conference on Electronic Communication and Artificial Intelligence(IWECAI).IEEE,2022:384-387. |
|