计算机科学 ›› 2024, Vol. 51 ›› Issue (6A): 240200058-6.doi: 10.11896/jsjkx.240200058
郎朗1, 陈晓琴1, 刘莎2, 周强3
LANG Lang1, CHEN Xiaoqin1, LIU Sha2, ZHOU Qiang3
摘要: 针对滚珠丝杠驱动表面背景环境复杂、点蚀缺陷目标小因而难以检测的问题,提出改进的Deeplabv3+滚珠丝杠驱动表面缺陷分割算法。本算法采用Re2Net-50替换Deeplabv3+的主干网络,显著提升了对小尺寸缺陷目标的识别能力。此外,通过在主干网络中融合特征金字塔网络FPN,能够加强多尺度信息的提取,从而增强了对缺陷目标的精确定位。最后,本研究在Deeplabv3+网络的ASPP模块之后引入了Coordinate Attention机制,能够增强模型对图像中空间和维度的关注,有效地捕获了图像中的长距离空间依赖关系。实验结果表明,与原始的Deeplabv3+相比,所提算法在平均交并比MIoU指标上提高了4.38%,准确率Accuracy提高了5.52%,F1-score提高了2.74%。同时,与其他经典的语义分割算法相比,所提算法也展现出了一定的优越性。
中图分类号:
[1]LEISCHER F J,ROOS B A,CHOPP S M,et al.Lifecycle-oriented component selection for machine tools based onmultibody simulation and component life prediction[J].Journal of Manufacturing Science and Technology,2009,1(3):179-184. [2]SHELHAMER E,LONG J,DARRELL T.Fully convolutionalnetworks for semantic segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(4):640-651. [3]RONNEBERGER O,FISCHER P,BROX T.U-net:Convolu-tional networks for biomedical image segmentation[C]//Proceedings of the Medical Image Computing and Computer-Assisted Intervention.Munich,Germany,2015:234-241. [4]ZHAO H,SHI J,QI X,et al.Pyramid scene parsing network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:2881-2890. [5]PENG L,ZHANG H.U-net for Pavement Crack Detection[J].Computer Science,2021,48(11A):616-619. [6]LUO D L,CAI Y X,YANG Z H,et al.Survey on industrial defect detection with deep learning[J].Science in China(Information Sciences),2022,52(6):1002-1038. [7]SCHLAGENHAUF T,LANDWEHR M.Industrial machinetool component surface defect dataset[J].Data in Brief,2021,39:107643. [8]CHEN L C,ZHU Y,PAPANDREOU G,et al.Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//Proceedings of the European Conference on Computer Vision(ECCV).2018:801-818. [9]GAO S H,CHENG M M,ZHAO K,et al.Res2Net:A NewMulti-Scale Backbone Architecture[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2021,43(2):652-662. [10]LIN T Y,DOLLAR P,GIRSHICK R,et al.Feature pyramidnetworks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:2117-2125. [11]HOU Q,ZHOU D,FENG J.Coordinate Attention for Efficient Mobile Network Design[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2021:13708-13717. [12]PENG C,ZHANG K,MA Y,et al.Cross fusion net:A fast semantic segmentation network for small-scale semantic information capturing in aerial scenes[J].IEEE Transactions on Geo-science and Remote Sensing,2021,60:1-13. [13]LIU Z,LIN Y,CAO Y,et al.Swin transformer:Hierarchical vision transformer using shifted windows[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2021:10012-10022. [14]XIE E,WANG W,YU Z,et al.SegFormer:Simple and efficient design for semantic segmentation with transformers[J].Advances in Neural Information Processing Systems,2021,34:12077-12090. [15]JIE H,LI S,GANG S,et al.Squeeze-and-excitation networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,8(42):2011-2023. [16]WOO S,PARK J,LEE J Y,et al.CBAM:Convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision.2018:3-19. |
|