计算机科学 ›› 2024, Vol. 51 ›› Issue (6A): 230800160-7.doi: 10.11896/jsjkx.230800160
韩志耕1,2, 周婷1,2, 陈耿2,3, 付纯硕1,2, 陈健1,2
HAN Zhigeng1,2, ZHOU Ting1,2, CHEN Geng2,3, FU Chunshuo1,2, CHEN Jian1,2
摘要: 基于矩阵分解的推荐模型虽然能够处理高维评分数据,但容易遭受评分数据稀疏性的困扰。基于评分和评论的推荐模型通过外加隐藏在评论中的用户偏好与物品属性信息,缓解了评分数据的稀疏性,但在特征提取时大多没有关注评论时效性和可信近邻影响力,无法获得更丰富的用户和物品特征。为进一步提高推荐精度,提出了融合评论时效与可信近邻影响力的推荐模型RM-RT2NI。基于评分矩阵,该模型使用矩阵分解提取了用户偏好和物品属性的浅层特征,利用云模型和修正的用户相似度评估模型和新构建的信度评估模型提取出可信近邻影响力;基于评论文本,该模型利用BERT模型获得每条评论的隐表达,利用双向GRU提取评论间的联系,利用新构建的融合时间因子的注意力机制识别各评论的时效贡献度,以获取用户和物品的深层特征。在此基础上,将用户浅层特征、深层特征以及可信近邻影响力特征融合成用户特征,将物品浅层特征和深层特征融合成物品特征,并将它们输入全连接神经网络以预测用户-物品评分。在5组公开数据集上对RM-RT2NI的推荐性能进行了实验评估,结果显示,与7个基线模型相比,RM-RT2NI具有更高的评分预测精度,且RMSE平均降低了3.0657%。
中图分类号:
[1]KO H,LEE S,PARK Y,et al.A survey of recommendation systems:recommendation models,techniques,and application fields[J].Electronics,2022,11(1):141-189. [2]ZHU Z,WANG S,WANG F,et al.Recommendation networks of homogeneous products on an E-commerce platform:Measurement and competition effects[J].Expert Systems with Applications,2022,201:117-128. [3]DHELIM S,AUNG N,BOURASM A,et al.A survey on personality-aware recommendation systems[J].Artificial Intelligence Review,2022,55:2409-2454. [4]RAZA S,DING C.News recommender system:a review of recent progress,challenges,and opportunities[J].Artificial Intelligence Review,2022,55:749-800. [5]ALHIJAWI B,AWAJAN A,FRAIHAT S.Survey on the objectives of recommender systems:Measures,solutions,evaluation methodology,and new perspectives[J].ACM Computing Surveys,2022,55(5):1-38. [6]TEGENE A,LIU Q,GAN Y,et al.Deep Learning and Embedding Based Latent Factor Model for Collaborative Recommender Systems[J].Applied Sciences,2023,13(2):726. [7]ZHENG L,NOROOZI V,YU P S.Joint deep modeling of users and items using reviews for recommendation[C]//Proceedings of the tenth ACM International Conference on Web Search and Data Mining.New York,USA,2017:425-434. [8]CHEN C,ZHANG M,LIU Y,et al.Neural attentional rating regression with review-level explanations[C]//Proceedings of the 2018 World Wide Web Conference.Republic and Canton of Geneva,CHE,2018:1583-1592. [9]FENG X J,ZENG Y Z.Joint Deep Modeling of Rating Matrix and Reviews for Recommendation[J].Chinese Journal of Computers,2020,43(5):884-900. [10]LI S Z,YU L T,DENG X H.Recommendation Model Combining Deep Sentiment Analysis and Scoring Matrix[J].Journal of Electronics & Information Technology,2022,44(1):245-253. [11]ZHAI Y,ZHANG X,DAO R,et al.Research on the usefulness of online reviews in catering trade[C]//2017 3rd International Conference on Information Management(ICIM).Chengdu,China,2017:247-251. [12]YUAN Y,ZAHIR A,YANG J.Modeling implicit trust in matrix factorization-based collaborative filtering[J].Applied Sciences,2019,9(20):4378-4396. [13]KASHANI S M Z,HAMIDZADEH J.Improvement of non-ne-gative matrix-factorization-based and Trust-based approach to collaborative filtering for recommender systems[C]//2020 6th Iranian Conference on Signal Processing and Intelligent Systems(ICSPIS).Mashhad,Iran,2020:1-7. [14]XU S,ZHUANG H,SUN F,et al.Recommendation algorithm of probabilistic matrix factorization based on directed trust[J].Computers & Electrical Engineering,2021,93:107-206. [15]XI W D,HUANG L,WANG C D,et al.Deep rating and review neural network for item recommendation[J].IEEE Transactions on Neural Networks and Learning Systems,2021,33(11):6726-6736. [16]WU L,HE X,WANG X,et al.A survey on accuracy-oriented neural recommendation:From collaborative filtering to information-rich recommendation[J].IEEE Transactions on Knowledge and Data Engineering,2023,35(5):4425-4445. [17]FANG H,ZHANG D,SHU Y,et al.Deep learning for sequential recommendation:Algorithms,influential factors,and evaluations[J].ACM Transactions on Information Systems(TOIS),2020,39(1):1-42. [18]TANG H,LEI M,GONG Q,et al.A BP neural network recommendation algorithm based on cloud model[J].IEEE Access,2019,7:35898-35907. |
|