计算机科学 ›› 2024, Vol. 51 ›› Issue (6A): 230900053-9.doi: 10.11896/jsjkx.230900053

• 交叉&应用 • 上一篇    下一篇

基于自适应修正模型的飞行器外流场三维计算方法

彭革1, 徐兴贵2, 李忠武2, 任维贺3, 李康3, 郑国宪3, 邓红艳3   

  1. 1 保山学院大数据学院 云南 保山 678000
    2 云南财经大学信息学院 昆明 650221
    3 北京空间机电研究所 北京 100081
  • 发布日期:2024-06-06
  • 通讯作者: 徐兴贵(xu_xinggui@126.com)
  • 作者简介:(pg_memf@126.com)
  • 基金资助:
    国家自然科学基金地区科学基金(62161051);云南省教育厅科学研究基金项目(2023J0678);云南省科技厅科技计划项目(202101BA070001-016);云南省服务计算重点实验室开放课题(YNSC23119)

Adaptive Modification Turbulence Model for Flow Field of Aircraft Calculating in Three Dimensions

PENG Ge1, XU Xinggui2, LI Zhongwu2, REN Weihe3, LI Kang3, ZHENG Guoxian3, DENG Hongyan3   

  1. 1 School of Big Data,Baoshan University,Baoshan,Yunnan 678000,China
    2 School of Information Science,Yunnan University of Finance and Economics,Kunming 650221,China
    3 Beijing Institute of Space Mechanics Electricity,Beijing 100081,China
  • Published:2024-06-06
  • About author:PENG Ge,born in 1993,master,researcher.His main research interests include artificial intelligence,pattern recognition and signal processing.
    XU Xinggui,born in 1985,assistant professor.His main research interests include image processing and search using theoretical and computational methods of information geometry.
  • Supported by:
    Less Developed Regions of the National Natural Science Foundation of China(62161051),Scientific Research Foundation of the Education Department of Yunnan Province,China(2023J0678),Science-Technology Foundation Yunnan Province,China(202101BA070001-016) and Laboratory of Yunnan Key Laboratory of Service Computing(YNSC23119).

摘要: 目前飞行器外流场仿真方法中存在流体可压缩性判断依赖经验知识以及目标外流场三维仿真缺乏封闭约束条件的问题。对此,提出一种基于自适应修正模型的三维外流场数值计算方法。根据飞行器外流场变异系数先验知识,采用加权平均N-S方程表示可压缩流体物理量分布,同时利用膨胀压缩修正和激波不定项修正两种策略自适应地修正k-ε湍流模型的可压缩性约束条件,并采用壁面函数对近壁区进行近似计算修正约束条件。以某型号无人机外流场分布三维建模仿真实验,结果表明:当飞行器速度达到1.5马赫时,可压缩修正模型出现边界约束条件临界值,所提自适应可压缩修正算法能有效判断气体可压缩性的变化并提升流体分布计算的准确性。

关键词: 湍流, 流场三维仿真, 密度加权平均数值模拟, 可压缩修正

Abstract: In view of the problems of fluid compressibility judgment relying on empirical knowledge and the lack of confinement constraints in the current three-dimensional simulation methods for vehicle outer flow field,an adaptive modification turbulence calculating model for the three dimensions vehicle outer flow field is proposed.The proposed algorithm adopts the density-weighted average N-S equation to calculate the flow field distribution of the compressible fluid according to the a priori knowledge of the coefficient of variation of the vehicle outer flow field,and utilizes two strategies,namely,expansion-compression modification and surge indeterminate modification to modify the compressibility constraints of the k-ε turbulence model in an adaptive way,and uses the wall function to modify the constraints in the near-wall region in an approximate computation.Experimental results of three-dimensional modeling and visualization of the outer flow field distribution of a certain type of unmanned aerial vehicle(UAV) show that when the Mach value reaches 1.5,the compressibility modification algorithm produces effects obviously.The proposed adaptive compressibility modification model is able to effectively judge the change of gas compressibility and improve the accuracy of fluid distribution calculation.

Key words: Turbulence, 3D simulation of outer flow field, Density-weighted averaged numerical simulation method, Compressibilitycorrection

中图分类号: 

  • TP391
[1]WU W Y.Hydrodynamics[M].Beijing:Peking UniversityPress,1983.
[2]LIU K,XU Y T.Application of CFD in High Speed Aircraft Thermal Aeroelastic Problems[J].PHYSICS OF GASES,2019,4(4):50-55.
[3]WANG H R,LIU X.Study on recognition and tracking algo-rithm for air vehicle infrared image[J].Laser & Infrared,2021,51(8):1097-1103.
[4]CHEN X.Quantitative Study of Flow Field Distribution Based on Background Oriented Schlieren Technique[D].Guilin:Guilin University of Electronic Technology,2022:26-45.
[5]SUN X H.Hydrodynamics[M].Shanghai:Shanghai Jiao Tong University Press,2000.
[6]WANG B G.Unsteady Aerodynamics[M].Beijing:Beijing Institute of Technology Press,2014.
[7]HAN S S,YE T H,ZHU M M,et al.A new k-ε turbulence model with compressibility modifications[J].Acta Aerodynamica Sinica,2009,27(6):677-682.
[8]WANG L,SONG W D,YANG X L.Aerodynamic Simulation Based on the k-ε Model with Compressibility Modifications[J].Journal of Projectiles,Rockets,Missiles and Guidance,2013,33(1):155-157,161.
[9]LIU H T,LIU C Y,LIU C L.Research on the application of a turbulence models with compressibility effects correction for a hypersonic vehicle[J].Journal of Solid Rocket Technology,2015,38(6):770-775.
[10]NAKASHIMA Y,WATANABE N,NISHIKAWA H.Hyperbolic Navier-Stokes solver for three-dimensional flows[C]//Proc.of 54th AIAA Aerospace Sciences Meeting,January 4-8,2016,San Diego,California,USA.Reston:American Institute of Aeronautics and Astronautics,2016.
[11]LOU S,WANG Z W,ZHAO Y,et al.Hyperbolic Navier-Stokes Systems for Three-Dimensional Viscous Flow in Edge-Based Cell-Vertex Unstructured Solver[C]//Proc.of 2019 IEEE 10th International Conference on Mechanical and Aerospace Engineering(ICMAE),July 22-25,2019,Brussels,Belgium.New York:IEEE,2019.
[12]WU Y Q,LIAO S Y,ZHANG Z Y,et al.Modeling of flow field and analysis of IR characteristic of aircraft based on Fluent[J].Infrared and Laser Engineering,2018,47(7):108-117.
[13]CAVALCA D F,BRINGHENTI C,CAMPOS G B,et al.,Development and convergence analysis of an effective and robust implicit Euler solver for 3D unstructured grids[J].Journal of Computational Physics,2018,367:399-415.
[14]LI L Q,LIU X D,LUO H.A reconstructed discontinuous Galerkin method based on variational formulation for compressible flows[J].Journal of Computational Physics,2022,466:111406.
[15]YOUNGDAE K,DEBOJYOTI G,EMIL M.Constantinescu,et al.GPU-accelerated DNS of compressible turbulent flows[J].Computers & Fluids,2023,251:105744.
[16]BRENER B P,CRUZ M A,THOMPSON R L,et al.,Conditioning and accurate solutions of Reynolds average Navier-Stokes equations with data-driven turbulence closures[J].Journal of Fluid Mechanics,2021,915:A110.
[17]MAIA A A G,KAPAT J S,TOMITA J T,et al.,Preconditioning methods for compressible flow CFD codes:Revisited[J].International Journal of Mechanical Sciences,2020,186:105898.
[18]PEREIRA F S,EÇA L,VAZ G.Simulation of wingtip vortex flows with Reynolds-averaged Navier-Stokes and scale-resolving simulation methods[J].AIAA Journal,2019,57(3):932-948.
[19]LI L,LOU J L,NISHIKAWA H,et al.,Reconstructed discontinuous Galerkin methods for compressible flows based on a new hyperbolic Navier-Stokes system[J].Journal of Computational Physics,2021,427:110058.
[20]LI K,TAN Z S.Analysis on the Difference of Emergency Management Ability of Large Cities Based on Coefficient of Variance[J].Journal of Wuhan University of Technology(IAME),2018,40(2):129-135.
[21]ZHANG Y,WANG X,SU Y,et al.Experimental study on visual optical monitoring of the atmospheric disturbance of moving objects[J].Infrared and Laser Engineering,2022,51(8):20210793.
[22]MENG X S,LI L K.Target recognition method of digital laser imaging fuze in ultra-low sea background[J].Infrared and Laser Engineering,2023,52(4):20220548.
[23]LIU C J,WANG H C,WANG G Q,et al.Background Modeling Method Integrating Color and Texture[J].Laser & Optoelectronics Progress,2022,59(22):2233002.
[24]YU J Q,LI N,HUANG X L,et al.Reconstruction of two-dimensional velocity distribution in circular combustion field by laser absorption spectrum[J].Laser & Optoelectronics Progress,2023,60(17):4.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!