计算机科学 ›› 2024, Vol. 51 ›› Issue (8): 183-191.doi: 10.11896/jsjkx.230500094
肖霄, 柏正尧, 李泽锴, 刘旭珩, 杜佳锦
XIAO Xiao, BAI Zhengyao, LI Zekai, LIU Xuheng, DU Jiajin
摘要: 目前,基于深度学习的点云上采样方法缺失对局部区域特征关联性的关注和对全局特征的多尺度提取,导致输出的密集点云存在异常值过多、细粒度不高等问题。为解决上述问题,提出了嵌入注意力机制的并行多尺度点云上采样网络(Parallel Multi-scale with Attention mechanism for Point cloud Upsampling),网络由特征提取器、特征拓展器、坐标细化器和坐标重建器4个模块级联组成。首先给定一个N×3的稀疏点云作为输入,为了获得点云的全局和局部特征信息,设计了一个嵌入注意力机制的并行多尺度特征提取模块(PMA)用于将三维空间的点云映射到高维特征空间。其次使用边缘卷积特征拓展器拓展点云特征维度,得到高维点云特征,以更好地保留点云特征的边缘信息,将高维点云特征通过坐标重建器转换回三维空间中。最后使用坐标细化器精细调整输出点云细节。在合成数据集PU1K上的对比实验结果表明,PMA-PU生成的密集点云在倒角距离(CD)、豪斯多夫距离(HD)和点面距离(P2F)上都有显著提升,分别比性能次优的网络模型优化了7.863%,21.631%,14.686%。可视化结果证明了PMA-PU具有性能更好的特征提取器,能够生成细粒度更高、形状更接近真实值的密集点云。
中图分类号:
[1]XU S K,ZHANG L J,SHI L,et al.Few-shot 3D point cloud object detection guided by Intention-attention[J].Computer Engineering,doi:10.19678/j.issn.1000-3428.0068727. [2]YANG W K,YUAN X P,CHEN X F.Spatial Multi-featureSegmentation of 3D Lidar Point Cloud[J].Computer Science,2021,49(8):143-149. [3]YU L Q,LI X Z,FU C W,et al.PU-Net:Point cloud upsampling network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:2790-2799. [4]WANG Y F,WU S H,HUANG H,et al.Patch-based progressive 3d point set upsampling[C]//Proceedings of IEEE Confe-rence on Computer Vision andPattern Recognition.2019:5958-5967. [5]QIAN G C,ABUALSHOUR A,LI G H,et al.PU-GCN:point cloud upsampling using graph convolutional networks[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.2021:11683-11692. [6]HAN B,ZHANG X Y,REN S.PU-GACNet:Graph Attentionconvolution Network for Point Cloud Upsampling[J].Image and Vision Computing,2022,118:104371. [7]ALEXA M,BEHR J,COHEN-OR D,et al.Computing and rendering point set surfaces[J]IEEE Transactions on Visualization and Computer Graphics,2003,9(1):3-15. [8]FERSTL D,REINBACHER C,RANFTL R,et al.Image guided depth upsampling using anisotropic total generalized variation[C]//Proceedings of IEEE International Conference on Computer Vision.2013:993-1000. [9]SCHUON S,THEOBALT C,DAVIS J,et al.High-quality scan-ning using time-of-flight depth super resolution[C]//2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.2008:1-7. [10]QI C R,SU H,MO K C,et al.Pointnet:Deep learning on point sets for 3d classification and segmentation[C]//Proceeding of the IEEE Conference on Computer Vision and Pattern Recognition.2017:652-660. [11]QI C R,LI Y,HAO S,et al.PointNet++:Deep Hierarchical Feature Learning on Point sets in a metric space[C]//Procee-dings of the 31st International Conference on Neural Information Processing Systems.2017:5105-5114. [12]LI R H,LI X Z,FU C W,et al.PU-GAN:a point cloud upsampling adversarial network[C]//Proceedings of IEEE/CVF International Conference on Computer Vision.2019:7203-7212. [13]LI R H,LI X Z,HENG P A,et al.Point cloud upsampling viadisentangled refinement[C]//Proceedings of IEEE/CVF Conference on Computer Vision andPattern Recognition.2021:344-353. [14]LIU H,YUAN H,HOU J,et al.PUFA-GAN:A Frequency-Aware Generative Adversarial Network for 3D point Cloud Upsampling[J].IEEE Transactions on Image Processing,2022,31:7389-7402. [15]LIU H,YUAN H,HAMZAOUI R,et al.PU-Refiner:A Geo-metry Refiner with Adversarial Learning for Point Cloud Upsampling[C]//IEEE International Conference on Acoustics,Speech and Signal Processing(ICASSP 2022).2022:2270-2274. [16]LUO L Q,TANG L L,ZHOU W Y,et al.PU-EVA:an edge-vector based approximation solution for flexible-scale point cloud upsampling[C]//Proceedings of IEEE/CVF International Conference on Computer Vision.2021:16208-16217. [17]ZHOU J,CUI G Q,HU S D,et al.Graph neural networks:a review of methods and applications[J].AI Open,2020,1:57-81. [18]XU Y F,FAN T Q,XU M Y,et al.SpiderCNN:deep learning on point sets with parameterized convolutional filters[C]//Proceedings of European Conference on Computer Vision(ECCV).2018:87-102. [19]MAO J,WANG X G,LI H S.Interpolated convolutional networksfor 3d point cloud understanding[C]//Proceedings of IEEE/CVF International Conference onComputer Vision.2019:1578-1587. [20]WANG Y,SUN Y B,LIU Z W,et al.Dynamic graph cnn for learning on point clouds[J].ACM Transactions on Graphics(ToG),2019,38(5):1-12. [21]LI G H,MÜLLER M,THABET A,et al.DeepGCNs:Can GCNs go as deep as CNNs?[C]//Proceedings of IEEE/CVF International Conference on Computer Vision.2019:9267-9276. [22]KAZI A,SHEKARFOROUSH S,KRISHNA S A,et al.InceptionGCN:Receptive field aware graph convolutional network for disease prediction[C]//Processingsof 26th International Confe-rence on Medical Imaging.2019:73-85. [23]WANG L,HUANG Y C,HOU Y L,et al.Graph attention convolution for point cloud semantic segmentation[C]//Procee-dings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.2019:10296-10305. [24]VASWANI A,SHAZEER N,PARMAR N,et al.Attention isall you need[C]//Proceedings of the 31st International Confe-rence on Neural Information Processing Systems.2017:6000-6010. [25]ZHONG F,BAI Z Y.3D point cloud super resolution with dynamic residual graph convolution networks[J].Journal of Zhejiang University(Engineering Science),2022,56(11):2251-2259. [26]LIU X H,LIU X C,LIU Y S,et al.SPU-Net:Self-Supervised Point Cloud Upsampling by Coarse-to-Fine Reconstruction With Self-Projection Optimization[J].IEEE Transactions on Image Processing,2022,31:4213-4226. [27]CHANG A X,FUNKHOUSER T,GUIBAS L,et al.ShapeNet:An Information-Rich 3D ModelRepository[J].arXiv:1512.03012,2015. [28]WIEMANN T,MITSCHKE I,MOCK A,et al.Surface Reconstruction from Arbitrarily Large Point Clouds[C]//2018 Second IEEE International Conference on Robotic Computing(IRC).2018:278-281. [29]HOPPE H.Poisson surface reconstruction and its applications[C]//Solid and Physical Modeling.2008. |
|