计算机科学 ›› 2024, Vol. 51 ›› Issue (10): 330-336.doi: 10.11896/jsjkx.240100207

• 人工智能 • 上一篇    下一篇

零边界条件下一维非线性细胞自动机可逆性的判定算法

马骏驰, 陈伟霖, 王晨, 林德福, 王超   

  1. 南开大学软件学院 天津 300350
  • 收稿日期:2024-01-29 修回日期:2024-06-05 出版日期:2024-10-15 发布日期:2024-10-11
  • 通讯作者: 王超(wangchao@nankai.edu.cn)
  • 作者简介:(majunchi@mail.nankai.edu.cn)
  • 基金资助:
    天津市自然科学基金(21JCYBJC00210)

Decision Algorithms for Reversibility of One-dimensional Non-linear Cellular Automata Under Null Boundary Conditions

MA Junchi, CHEN Weilin, WANG Chen, LIN Defu, WANG Chao   

  1. College of Software,Nankai University,Tianjin 300350,China
  • Received:2024-01-29 Revised:2024-06-05 Online:2024-10-15 Published:2024-10-11
  • About author:MA Junchi,born in 2000,postgraduate.His main research interest is cellular automaton.
    WANG Chao,born in 1976,associate researcher,is a member of CCF(No.29080M).His main research interests include theoretical computer science,mechine learning and AI.
  • Supported by:
    Natural Science Fundation of Tianjin,China(21JCYBJC00210).

摘要: 可逆性的性质对于经典的计算机科学理论模型——细胞自动机(Cellular Automata,CA)具有重要意义。尽管CA在零边界条件下的线性规则的可逆性问题已经得到了大量的研究,但非线性规则目前还很少被探索。文中研究了在有限域$\mathbb{Z}_{p}$上一般一维CA的可逆性问题,找到了一种优化Amoroso无限CA满射性判定算法的方法。基于此,文中还提出了在零边界条件下判定一维CA可逆性的算法,其中包括一种在零边界条件下判定一维CA严格可逆性的算法,以及一种基于桶链的在零边界条件下计算一维CA的可逆性函数的算法。这些判定算法不仅适用于线性规则,也适用于非线性规则。除此以外,还证实了可逆性函数总是有一个周期的,且其周期性与对应桶链的周期性有关。文中给出了一些可逆CA的实验结果,并通过实验结果对理论部分进行了补充验证,进一步支持了文章的研究结论。

关键词: 细胞自动机, 非线性规则, 可逆性, 零边界, 一维

Abstract: The property of reversibility is quite meaningful for the classic theoretical computer science model,cellular automata.For the reversibility problem for a CA under null boundary conditions,while linear rules have been extensively studied,the non-linear rules have so far been rarely explored.The paper investigates the reversibility problem of general one-dimensional CA on a finite field $\mathbb{Z}_{p}$,and proposes an approach to optimize the Amoroso's infinite CA surjectivity detection algorithm.Based on this,this paper proposes an algorithm for determining the invertibility of one-dimensional CA under zero boundary conditions,including an algorithm for determining the strict invertibility of one-dimensional CA under zero boundary conditions,and an algorithm for calculating the invertibility function of one-dimensional CA under zero boundary conditions based on barrel chain.These decision algorithms work for not only linear rules but also non-linear rules.In addition,it has been confirmed that the reversibility function always has a period,and its periodicity is related to the periodicity of the corresponding bucket chain.Some of the experiment results of reversible CA are presented in this paper,complementing and validating the theoretical aspects,and thereby further supporting the research conclusions of this paper.

Key words: Cellular automata, Non-linear rules, Reversibility, Null boundary, One-dimensional

中图分类号: 

  • TP305
[1]VON NEUMANN J,BURKS A W.Theory of self-reproducing automata[J].IEEE Transactions on Neural Networks,1966,5(1):3-14.
[2]GARDNER M.Mathematical games[J].Scientific American,1970,222(6):132-140.
[3]WANG J,LV W,JIANG Y,et al.A cellular automata approach for modelling pedestrian-vehicle mixed traffic flow in urban city[J].Applied Mathematical Modelling,2023,115:1-33.
[4]KIPPENBERGER S,BERND A,THAÇI D,et al.Modeling pat-tern formation in skin diseases by a cellular automaton[J].The Journal of Investigative Dermatology,2013,133(2):567.
[5]VALENTIM C A,RABI J A.,DAVID S A.Cellular-automaton model for tumor growth dynamics:Virtualization of different scenarios[J].Computers in Biology and Medicine,2022,153:106481.
[6]WANG Y,ZHANG L,MA J,et al.Combining building and behavior models for evacuation planning[J].IEEE Computer Graphics and Applications,2010,31(3):42-55.
[7]REN F,GE H,FANG H,et al.Simulation of the dendritegrowth during directional solidification under steady magnetic field using three-dimensional cellular automaton method coupled with Eulerian multiphase[J].International Journal of Heat and Mass Transfer,2024,218:124809.
[8]ZHOU F,GUO J,ZHAO Y,et al.An improved cellular automaton model of dynamic recrystallization and the constitutive mo-del coupled with dynamic recrystallization kinetics for microalloyed high strength steels[J/OL].https://doi.org/10.1016/j.jmrt.2023.12.024.
[9]XU X,FAN C,WANG L.A deep analysis of the image and videoprocessing techniques using nanoscale quantum-dots cellular automata[J].Optik,2022,260:169036.
[10]DARANI A Y,YENGEJEH Y K,PAKMANESH H,et al.Image encryption algorithm based on a new 3D chaotic system using cellular automata[J].Chaos,Solitons & Fractals,2024,179:114396.
[11]CAPPELLARI L,MILANI S,CRUZ-REYES C,et al.Resolution scalable image coding with reversible cellular automata[J].IEEE Transactions on Image Processing,2010,20(5):1461-1468.
[12]MOORE E F.Machine models of self-reproduction[J].Procee-dings of symposia in applied mathematics.American Mathematical Society New York,1962,14(5):17-33.
[13]AMOROSO S,PATT Y N.Decision procedures for surjectivity and injectivity of parallel maps for tessellation structures[J].Journal of Computer and System Sciences,1972,6(5):448-464.
[14]BRUCKNER L K.On the Garden-of-Eden problem for one-di-mensional cellular automata[J].Acta Cybernetica,1979,4(3):259-262.
[15]SUTNER K.De Bruijn graphs and linear cellular automata[J].Complex Systems,1991,5(1):19-30.
[16]DEL REY A M.A note on the reversibility of elementary cellular automaton 150 with periodic boundary conditions[J].Romanian Journal of Information Science and Technology,2013,16(4):365-372.
[17]DEL REY A M.A note on the reversibility of the elementary cellular automaton with rule number 90[J].Revista De la Unión Matemática Argentina,2015,56(1):107-125.
[18]DEL REY A M,SÁNCHEZ G R.On the reversibility of 150 Wolfram cellular automata[J].International Journal of Modern Physics C,2006,17(7):975-983.
[19]SARKAR P,BARUA R.The set of reversible 90/150 cellularautomata is regular[J].Discrete Applied Mathematics,1998,84(1/2/3):199-213.
[20]CINKIR Z,AKIN H,SIAP I.Reversibility of 1D cellular auto-mata with periodic boundary over finite fields[J].Journal of Statistical Physics,2011,143(4):807-823.
[21]YANG B,WANG C,XIANG A.Reversibility of general 1D linearcellular automata over the binary field Z2 under null boundary conditions[J].Information Sciences,2015,324:23-31.
[22]DU X,WANG C,WANG T,et al.Efficient methods with polynomial complexity to determine the reversibility of general 1D linear cellular automata over Zp[J].Information Sciences,2022,594:163-176.
[23]WOLFRAM S,GAD-El-HAK M.A new kind of science[J].Ap-pl.Mech.Rev.,2003,56(2):18-19.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!