计算机科学 ›› 2024, Vol. 51 ›› Issue (11A): 230900116-6.doi: 10.11896/jsjkx.230900116
宋子岩1, 罗川1, 李天瑞2, 陈红梅2
SONG Ziyan1, LUO Chuan1, LI Tianrui2, CHEN Hongmei2
摘要: 基于胸部X光片的胸部疾病分类对于提高诊断准确率、减轻医疗卫生系统压力具有重要意义。不同胸部疾病的发病区域尺寸存在巨大差异,是基于胸部X光片的胸部疾病分类任务面临的主要挑战。在对发病区域较小的疾病进行分类时,图像中大部分区域均为噪声区域,传统方法难以有效应对疾病间巨大的尺寸差异。针对这一问题,提出了一种结合多尺度特征的掩码构造方法,以DenseNet-121为特征提取器,构建了一个双分支网络,使用全局网络进行总体分类,并将微小病变区域送入局部分支以减轻噪声区域的干扰,最终利用基于注意力机制分支特征融合模块自适应地融合两个分支的分类特征信息。在ChestX-ray14数据集上进行了对比实验、消融实验和参数敏感性分析,结果表明,所提方法对14种胸部疾病分类的平均AUC高于现有方法,具有有效性且对参数不敏感。
中图分类号:
[1]MA X Q,ZHU L L,KURCHE J S,et al.Global and regionalburden of interstitial lung disease and pulmonary sarcoidosis from 1990 to 2019:results from the global burden of disease study 2019[J].Thorax,2022,77(6):596-605. [2]MCLAUGHLIN L,BOND R,HUGHES C,et al.Computing eyegaze metrics for the automatic assessment of radiographer performance during x-ray image interpretation [J].International Journal of Medical Informatics,2017,105:11-21. [3]HOSSAIN M I,HOSSAIN S M,ZUNAED M,et al.A novel attention mechanism using anatomical prior probability maps for thoracic disease classification from x-ray images [J].arXiv:2210.02998,2022. [4]WANG H Y,WANG S S,QIN Z B,et al.Triple attention lear-ning for classification of 14 thoracic diseases using chest radiography[J].Medical Image Analysis,2021,67:101846. [5]GUAN Q J,HUANG Y P,ZHONG Z,et al.Thorax diseaseclassification with attention guided convolutional neural network[J].Pattern Recognition Letters,2020,131:38-45. [6]ÇALLI E,SOGANCIOGLU E,VAN G B,et al.Deep learning for chest x-ray analysis:a survey [J].Medical Image Analysis,2021,72:102125. [7]WANG X S,PENG Y F,LU L,et al.Chestx-ray8:hospital-scale chest x-ray database andbenchmarks on weakly-supervised classification and localization of common thorax diseases[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:2097-2106. [8]RAJPURKAR P,IRVINJ,ZHU K,et al.Chexnet:radiologist-level pneumonia detection on chest x-rays with deep learning [J].arXiv:1711.05225,2017. [9]HUANG G,LIU Z,VAN DER MAATEN L,et al.Densely connected convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:4700-4708. [10]IOFFEG S,SZEGEDY C.Batch normalization:accelerating deep network training by reducing internal covariate shift[C]//International Conference on Machine Learning.2015:448-456. [11]BALTRUSCHAT I M,NICKISCH H,GRASS M,et al.Com-parison of deep learning approaches for multi-label chest x-ray classification[J].Scientific Reports,2019,9(1):6381. [12]GUAN Q J,HUANG Y P.Multi-label chest x-ray image classification via category-wise residual attention learning [J].Pattern Recognition Letters,2020,130:259-266. [13]GE Z Y,MAHAPATRA D,CHANG X J,et al.Improvingmulti-label chest x-ray disease diagnosis by exploiting disease and health labels dependencies [J].Multimedia Tools and Applications,2020,79:14889-14902. [14]CAI J Z,LU L,HARRISON A P,et al.Iterative attention mi-ning for weakly supervised thoracic disease pattern localization in chest x-rays[C]// Medical Image Computing and Computer Assisted Intervention.2018:589-598. [15]LI B C,KANG G X,CHENG K,et al.Attention-guided convolutional neural network for detecting pneumonia on chest x-rays[C]//2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society.2019:4851-4854. [16]HU J,SHEN L,SUN G.Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on ComputerVision and Pattern Recognition.2018:7132-7141. [17]SAEDNIA K,JALALIFAR A,EBRAHIMI S,et al.An atten-tion-guided deep neural network for annotating abnormalities in chestx-ray images:visualization of network decision basis[C]//2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society.2020:1258-1261. [18]WANG H Y,JIA H Z,LU L,et al.Thorax-net:an attentionregularized deep neural network for classification of thoracic diseases on chest radiography [J].IEEE Journal of Biomedical and Health Informatics,2019,24(2):475-485. [19]KAMAL U,ZUNAED M,NIZAM N B,et al.Anatomy-xnet:an anatomy aware convolutional neural network for thoracic disease classification in chest x-rays [J].IEEE Journal of Biomedical and Health Informatics,2022,26(11):5518-5528. [20]CHEN B Z,ZHANG Z,LIN J Y,et al.Two-stream collaborativenetwork for multi-label chest x-ray Image classification with lung segmentation [J].Pattern Recognition Letters,2020,135:221-227. [21]RUSSAKOVSKY O,DENG J,SU H,et al.Imagenet large scale visual recognition challenge [J].International Journal of Computer Vision,2015,115:211-252. [22]WOO S,PARK J,LEE J Y,et al.Cbam:convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision.2018:3-19. [23]YAO L,POBLENZE,DAGUNTS D,et al.Learning to diagnose from scratch by exploiting dependencies among labels [J].ar-Xiv:1710.10501,2017. [24]LI Z,WANG C,HAN M,et al.Thoracic disease identification and localization with limited supervision[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:8290-8299. |
|