计算机科学 ›› 2024, Vol. 51 ›› Issue (11A): 240100141-9.doi: 10.11896/jsjkx.240100141
刘云清1,2, 吴越1, 张琼1,2, 颜飞1,2, 陈姗姗1
LIU Yunqing1,2, WU Yue1, ZHANG Qiong1,2, YAN Fei1,2, CHEN Shanshan1
摘要: 针对目前对细小裂缝检测能力不强、分割精度低等问题,提出了一种改进的U-Net模型来检测路面裂缝,提高检测能力和分割精度。中文设计了新的模块MSDWBlock(Multi-Scale Depthwise Separable Convolutional Block),应用在编码器和解码器部分,通过深度可分离卷积增强模型的能力,扩大模型感受野,在跳跃连接部分引入了C2G注意力机制模块,提升模型对裂缝特征的感知能力;并引入了ASPP(Atrous Spatial Pyramid Pooling)和DWT(Discrete Wavelet Transformation)。ASPP通过在多个尺度上进行操作,有助于捕捉到裂缝的特征,而DWT能够减少卷积池化过程中的裂缝空间信息损失,保留裂缝边缘信息。这种结构设计使得网络更专注于裂缝的特征,从而提升了裂缝检测的准确性。通过实验证明所提模型显示出优于U-Net,Segnet,U2net等先进模型的精确性。在CFD数据集上mIoU,F1分别达到78.51%,0.868。这些成果表明,所提方法能有效提升道路裂缝检测的性能。
中图分类号:
[1]2020 Statistical Bulletin on the Development of the Transportation Industry [J].Communications Finance and Accounting,2021(6):92-97. [2]MA L,LI J.SD-GCN:Saliency-based dilated graph convolutionnetwork for pavement crack extraction from 3D point clouds[J].International Journal of Applied Earth Observation and Geoinformation,2022,111:102836. [3]GUPTA P,DIXIT M.Image-based crack detection approaches:a comprehensive survey[J].Multimedia Tools and Applications,2022,81(28):40181-40229. [4]SHI Y,CUI L,QI Z,et al.Automatic road crack detec-tion using random structured forests[J].IEEE Transactions on Intelligent Transportation Systems,2016,17(12):3434-3445. [5]ZOU Q,CAO Y,LI Q,et al.CrackTree:Automatic crack detection from pavement images[J].Pattern Recognition Letters,2012,33(3):227-238. [6]LI Q,ZOU Q,ZHANG D,et al.FoSA:F*seed-growing ap-proach for crack-line detection from pavement images[J].Image and Vision Computing,2011,29(12):861-872. [7]DORAFSHAN S,THOMAS R J,MAGUIREM.Comparison ofdeep convolutional neural networks and edge detectors for image-based crack detection in concrete[J].Construction and Building Materials,2018,186:1031-1045. [8]KAMALIARDAKANI M,SUN L,ARDAKANI M K.Sealed-crack detection algorithm using heuristic thresholding approach[J].Journal of Computing in Civil Engineering,2016,30(1):04014110. [9]WANG J,LIU F,YANG W,et al.Pavement crack detectionusing attention u-net with multiple sources[C]//Pattern Recognition and Computer Vision:Third Chinese Conference(PRCV 2020).Nanjing,China,Part II 3.Springer International Publishing,2020:664-672. [10]ZHANG L,YANG F,ZHANG Y D,et al.Road crack detection using deep convolutional neural network[C]//2016 IEEE International Conference on Image Processing(ICIP).IEEE,2016:3708-3712. [11]ZHANG A,WANG K C P,LI B,et al.Automated pixel-levelpavement crack detection on 3D asphalt surfaces using a deep-learning network[J].Computer-Aided Civil and Infrastructure Engineering,2017,32(10):805-819. [12]LI G,MA B,HE S,et al.Automatic tunnel crack detection based on u-net and a convolutional neural network with alternately updated clique[J].Sensors,2020,20(3):717. [13]ZHU S,DU J,LI Y,et al.Method for bridge crack detectionbased on the U-Net convolutional networks[J].Journal of Xi-dian University,2019,46(4):35-42. [14]LIU Z,CAO Y,WANG Y,et al.Computer vision-based concretecrack detection using U-net fully convolutional networks[J].Automation in Construction,2019,104:129-139. [15]HUYAN J,LI W,TIGHE S,et al.CrackU-net:A novel deepconvolutional neural network for pixelwise pavement crack detection[J].Structural Control and Health Monitoring,2020,27(8):e2551. [16]HOWARD A G,ZHU M,CHEN B,et al.Mobilenets:Efficient convolutional neural networks for mobile vision applications[J].arXiv:1704.04861,2017. [17]GUO T,MOUSAVI H S,VU T H,et al.Deep wavelet prediction for image super-resolution[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops.2017:104-113. [18]BAE W,YOO J,CHULYE J.Beyond deep residual learning for image restoration:Persistent homology-guided manifold simplification[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops.2017:145-153. [19]LI Q,SHEN L,GUO S,et al.Wavelet integrated CNNs fornoise-robust image classification[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:7245-7254. [20]MNIH V,BADIA A P,MIRZA M,et al.Asynchronous methods for deep reinforcement learning[C]//International Conference on Machine Learning.PMLR,2016:1928-1937. |
|