计算机科学 ›› 2024, Vol. 51 ›› Issue (11A): 240400064-6.doi: 10.11896/jsjkx.240400064
任禹衡1, 赵云峰2, 吴闯3
REN Yuheng1, ZHAO Yunfeng2, WU Chuang3
摘要: 步态识别是一种快速发展的远距离生物特征识别技术,在远距离、跨视角和跨着装等多种场景中具有广泛应用和优势。传统的生物特征识别技术,如指纹识别、面部识别等,往往需要近距离或在特定条件下才能有效进行,而步态识别技术则突破了这些限制,使得在更为广泛的环境下进行个体识别成为可能。以往的研究大多采用轻量级的神经网络提取步态特征,并在目前流行的跨视角和跨着装数据集上(如CASIA-B)取得了巨大的进步。然而,实验结果表明,在CASIA-B数据集上简单叠加神经网络的层数将导致识别准确率大幅度下降。基于相对位置编码转换器模块提出了一个深度步态识别网络,旨在避免陷入“局部特征关联”的陷阱,同时使网络能够持续不断地学习步态序列的时序特征。与目前主流的方法相比,所提方法在室内场景(CASIA-B,OUMVLP)和室外场景(Gait3D)步态数据集上都达到了更优的识别准确率,特别在换装任务(CL)上超出基准方法1.9%,实现了85.5%识别准确率。
中图分类号:
[1]LARSEN P,SIMONSEN E,LYNNERUP N.Gait analysis inforensic medicine[J].Journal of Forensic Sciences,2008,53:1149-1153. [2]BOUCHRIKA I,GOFFREDO M,CARTER J,et al.On using gait in forensic biometrics [J].Journal of Forensic Sciences,2011,56:882-889. [3]CHAO H Q,HE Y W,ZHANG J P,et al.Gaitset:Regarding gait as a set for cross-view gait recognition [C]//Proceedings of the AAAI Conference on Artificial Intelligence.2019:8126-8133. [4]HERMANS A,BEYER L,LEIBE B.In defense of the tripletloss for person re-identification [J].arXiv:1703.07737,2017. [5]FAN C,PENG Y J,CAO C S,et al.Gaitpart:Temporal part-based model for gait recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2020:14225-14233. [6]LIN B B,ZHANG S L,YU X.Gait recognition via effective global-local feature representation and local temporal aggregation[C]//Proceedings of the IEEE International Conference on Computer Vision.2021:14648-14656. [7]HUANG Z,XUE D X,SHEN X,et al.3D local convolutionalneural networks for gait recognition [C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2021:14920-14929. [8]YU S Q,TAN D L,TAN T N.A framework for evaluating the effect of view angle,clothing and carrying condition on gait re-cognition [C]//The International Conference on Pattern Recognition.2006:441-444. [9]LOPER M,MAHMOOD N,ROMERO J,et al.SMPL:Askinned multi-person linear model [J].ACM Transactions on Graphics,2015:1-16. [10]SHIRAGA K,MAKIHARA Y,MURAMATSU D,et al.Geinet:Viewinvariant gait recognition using a convolutional neural network [C]//International Conference on Biometrics.2016:1-8. [11]WU Z F,HUANG Y Z,WANG L,et al.A comprehensive study on crossview gait based human identification with deep cnns [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2016,39:209-226. [12]HOU S H,CAO C S,LIU X,et al.Gait lateral network:Lear-ning discriminative and compact representations for gait recognition [C]//Proceedings of the European Conference on Computer Vision.2020:382-398. [13]WANG X L,GIRSHICK R,GUPTA A,et al.Non-local neural networks [C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:7794-7803. [14]HU J,SHEN L,ALBANIE S,et al.Squeeze-and-excitation net-works [C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:7132-7141. [15]VASWANI A,SHAZEER N,PARMAR N,et al.Attention isall you need [C]//Proceedings of the 31st International Confe-rence on in Neural Information Processing Systems.2017:6000-6010. [16]SU J L,LU Y,PAN S F,et al.Roformer:Enhanced transformer with rotary position embedding [J].arXiv:2104.09864,2021. [17]TAKEMURA N,MAKIHARA Y,MURAMATSU D,et al.Multi-view large population gait dataset and its performance evaluation for cross-view gait recognition[J].IPSJ transactions on Computer Vision and Applications,2018,10:1-14. [18]ZHENG J K,LIU X C,LIU W,et al.Gait recognition in thewild with dense 3d representations and a benchmark [C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2022:20228-20237. [19]LIN B B,ZHANG S L,BAO F.Gait recognition with multiple-temporal-scale 3d convolutional neural net-work [C]//Procee-dings of the 28th ACM International Conference on Multimedia.2020:3054-3062. [20]FAN C,LIANG J H,SHEN C F,et al.OpenGait:RevisitingGait Recognition Toward Better Practicality [C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Re-cognition.2023:9707-9716. [21]DOU H Z,ZHANG P Y,ZHAO Y H,et al.Gaitmpl:Gait recognition with memory-augmented progressive learning[J].IEEE Transactions on Image Processing,2022,33:1464-1475. [22]CHAI T R,LI A N,ZHANG S X,et al.Lagrange motion analysis and view embeddings for improved gait recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2022:20249-20258. |
|