计算机科学 ›› 2024, Vol. 51 ›› Issue (6A): 230600115-5.doi: 10.11896/jsjkx.230600115

• 交叉&应用 • 上一篇    下一篇

一个面向短波通信的LHOG话音检测方法

白洁1, 田瑞丽2, 任一夫1, 员建厦1   

  1. 1 中国电子科技集团公司第五十四研究所 石家庄 050081
    2 中国联合网络通信有限公司河北省分公司 石家庄 050051
  • 发布日期:2024-06-06
  • 通讯作者: 白洁(13086194@qq.com)
  • 基金资助:
    河北省智能化信息感知与处理重点实验室发展基金项目(SXX22138X002)

Low-rank HOG Voice Detection Method for Short-wave Communication

BAI Jie1, TIAN Ruili2, REN Yifu1, YUAN Jianxia1   

  1. 1 The 54th Research Institute of CETC,Shijiazhuang 050081,China
    2 China United Network Communications Co.,Ltd.Hebei Branch,Shijiazhuang 050051,China
  • Published:2024-06-06
  • About author:BAI Jie,born in 1981,postgraduate.His main research interests include big data and artificial intelligence technology applications.
  • Supported by:
    Development Fund Project of Hebei Key Laboratory of Intelligent Information Perception and Processing(SXX22138X002).

摘要: 噪声环境下语音检测准确率偏低是短波通话面临的公开挑战。当前已有方法应用有限,其根源在于难以可靠地在噪音环境下提取准确且高效的语音特征。针对上述问题,提出了一个面向短波通信的低秩方向梯度直方图(Low-rank Histogram of Oriented Gradient,LHOG)话音检测方法。首先,对目标音频源数据进行预处理,实现噪声环境下语音信息的可视化表征;然后,在HOG特征提取器中嵌入低秩化结构,缓解特征中的冗余信息,并降低噪声干扰,从而获得准确且高效的特征;最后,通过常用的SVM分类模型便可在噪声环境中准确快速地区分话音和噪声。测试结果表明,该方法的准确率达到了95.12%,误报率仅为0.96%,漏报率为13.14%。与现有主流方法的对比实验证明,该方法话音检测准确率高,资源占用少,能够有效提高短波通信侦控效率。

关键词: 模式识别, 语谱图, 方向梯度直方图, 低秩结构, 支持向量机

Abstract: The low accuracy of voice detection in noisy environment is an open challenge for short wave communication.The application of existing methods is limited,because it is difficult to reliably extract accurate and efficient voice features in the noise environment.To solve the above problem,a Low-rank histogram of oriented gradient(LHOG) voice detection method for short wave communication is proposed in this paper.Firstly,target audio source data is preprocessed to realize visual representation of voice information in noisy environment.Then,a low-rank structure is embedded in the HOG feature extractor to alleviate redundant information and reduce noise interference,so as to obtain accurate and efficient features.Finally,the common SVM classification model can be used to reliably distinguish voice from noise in noisy environment.The test results show that the accuracy of this method is 95.12%,the false positive rate is 0.96%,and false negative rate is 13.14%.Compared with the existing mainstream methods,the experiment shows that the average detection accuracy of this method is higher,and resource occupation is less.Therefore,this method can effectively improve the detection and control efficiency of short-wave communication.

Key words: Pattern recognition, Spectrogram, HOG, Low-rank structure, SVM

中图分类号: 

  • TP391.4
[1]WANG J R,LI Y B.Design on all-digital demodulation algo-rithm for HF multitone parallel signal[J].Radio Engineering,2016,46(1):76-79.
[2]WAN L,WANG Q,LI J.End-to-End Speech Recognition with Recurrent Neural Networks for Mandarin Chinese[J].IEEE/ACM Transactions on Audio,Speech,and Language Processing,2017,25(10):1974-1983.
[3]LI B.Speech Activity Detection Based on Deep Neural Networks Trained with Noise-Robust Features[J].IEEE/ACM Transactions on Audio,Speech,and Language Processing,2017,25(11):2193-2203.
[4]ALDARMAKI H,ULLAH A,RAM S,et al.Unsupervised automatic speech recognition:A review[J].Speech Communication,2022,139:76-91
[5]DONG B H,LI S Q.Current status and developing tendency for high frequency communications[J].Information and Electronic Engineering,2007,5(1):1-5.
[6]YIN F M,WANG S J,ZHAO L.Environmental sound classification using DeepESC convolutional neural networks[J].Technical Acoustics.2019,38(5):590-593.
[7]CHEN D,HUANG Z P.Car honking recognition based on mel frequency cepstrum coefficient and support vector machine[J].Science Technology and Engineering,2021,21(11):4486-4491.
[8]SAILOR H B,AGRAWAL D M,PATIL H A.Unsupervised filterbank learning using convolutional restricted boltzmann machine for environmental sound classification[C]//Proceedings of Conference on the International Voice Communication Association,2017:3107-3111.
[9]CHEN H T,LIU Z Z,LIU Z M,et al.Integrating the data augmentation scheme with various classifiers for acoustic scene modeling[J].arXiv:1907.006639,2019.
[10]CHOI Y,ATIF O,LEE J,et al.Noise-robust sound-event classification system with texture analysis[J].Symmetry,2018,10(9):402.
[11]QIU Y,JIA G M,YANG J F,et al.Voice recognition model of civil aviation radiotelephony communication based on BiLSTM[J].Journal of Signal Processing,2019,35(2):293-300.
[12]YU Q Q,LI Y,LI Y.Eco-environmental sounds classificationunder noise conditions[J].Journal of Chinese Computer Systems,2011,32(8):1689-1693.
[13]YANG L D,HU J T.Audio scene recognition of deep neural network under multiple optimization mechanisms[J].Journal of Signal Processing,2021,37(10):1969-1976.
[14]DALAL N,TRIGGS B.Histograms of briented gradients forhuman detection[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition(CVPR 2005).IEEE,2005:886-893.
[15]GENG Y N,LIU S S,LIU T T,et al.Survey of pedestrian detection technology based on computer vision[J].Journal of Computer Applications,2021,41(S1):43-50.
[16]LE V,ZHU Y,NGUYEN A.Research on depth image gesture segmentation and HOG-SVM gesture recognition method[J].Computer Applictions and Software,2016,33(12):122-126.
[17]ALBIOL A,MONZO D,MARTIN A,et al.Face recognitionusing HOG-EB-GM[J].Pattern Recognition Letters,2008,29(10):1537-1543.
[18]BAO X M,REN W J,LV W T.A novet algorithm for Pedestrian recognition based on gabor wavelet and HOG feature[J].Radio Engineering,2017,47(10):25-29,48.
[19]ZHANG L,ZHANG Y,CHEN L L.A method of low illumination image target recognition[J].Radio Engineering,2020,50(8):656-660.
[20]CORTES C,VAPNIK V.Support vector networks[J].Machine Learning,1995,20:273-297.
[21]XU X Y,YAO P.Palm vein recognition algorithm based onHOG and improved SVM[J].Computer Engineering and Applications,2016,52(11):175-180.
[22]SRIVASTAVA R K,PANDEY D.Speech recognition usingHMM and Soft Computing[J].Materials Today:Proceedings,2022,51:1878-1883.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!