计算机科学 ›› 2024, Vol. 51 ›› Issue (11A): 231100091-5.doi: 10.11896/jsjkx.231100091

• 网络&通信 • 上一篇    下一篇

基于力引导定位的移动传感器网络协同目标追踪

王宗尧, 崔文栋, 郭月, 余方平   

  1. 大连海事大学综合交通运输协同创新中心 辽宁 大连 116026
    大连海事大学航运经济与管理学院 辽宁 大连 116026
  • 出版日期:2024-11-16 发布日期:2024-11-13
  • 通讯作者: 王宗尧(wzy@dlmu.edu.cn)
  • 基金资助:
    国家自然科学基金(72072018,71831002);科技部重点研发计划“多式联运智能集成技术与装备开发”(2019YFB1600400);中国博士后研究基金会(2019M651101,2021T140081);绿色港口与航运网络运营管理优化研究(83118047004)

Collaborative Target Tracking of Mobile Sensor Networks Based on Force-directed Localization

WANG Zongyao, CUI Wendong, GUO Yue, YU Fangping   

  1. Collaborative Innovation Center for Transport Studies,Dalian Maritime University,Dalian,Liaoning 116026,China
    School of Maritime Economics and Management,Dalian Maritime University,Dalian,Liaoning 116026,China
  • Online:2024-11-16 Published:2024-11-13
  • About author:WANG Zongyao,born in 1980,Ph.D,associate professor.His main research interests include swarm intelligence,deep learning and embedded systems.
  • Supported by:
    National Natural Science Foundation of China(72072018,71831002),Key R & D Program of the Ministry of Science and Technology for “Intelligent Integration Technology and Equipment Development of Multimodal Transport” (2019YBB1600400),China Postdoctoral Research Foundation(2019M651101,2021T140081) and Research on Optimizing the Operation and Management of Green Ports and Shipping Networks(83118047004).

摘要: 文中提出了一种移动式传感器网络的协同定位与目标追踪系统。该系统利用传感器节点的板载测距设备构建节点间的距离矩阵,通过力引导算法将网络节点的位置姿态信息从距离矩阵中还原出来。相比于GPS或固定信标等全局定位系统,该系统不需要提前布设基站,就可以实现传感器网络的协同定位。由于采用超高频测距定位,该系统避免了视觉定位导致的视觉遮挡和感知范围受限等问题,还采用了深度学习实现传感器网络节点的目标识别。在没有全局定位系统和中心控制器的条件下,传感器网络通过协同式定位和分布式群体控制,实现网络布局调整、视觉目标识别以及目标协同追踪。诸多优点使得该系统可以随意部署在战场、灾区、地下隧道甚至外太空等极端环境。采用理论分析方法证明了力引导定位系统的稳定性,并通过模拟实验和真实机器人实验证明了所提系统的可行性和实用性。

关键词: 传感器网络, 力引导布局, 分布式定位, 目标追踪, 超宽带

Abstract: A collaborative localization system and target-tracking controller for mobile sensor networks is proposed.The localization system uses the onboard UWB ranging equipment to obtain the distance information between sensor nodes and build a distance matrix for the sensor network.The pose information is restored from the distance matrix rough the force-directed algorithm.Compared with global positioning systems such as GPS or beacons,this system does not need to deploy base stations in advance.Compared with visual positioning systems,the localization system uses Urbanology to achieve ranging and positioning which does not influence by illumination,visual occlusion.and limited perception range.The proposed sensor network system uses deep learning and hierarchical clustering to achieve target detection and image data fusion.The sensor network can automatically implement layout adjustment and collaborative target tracking.Because of its advantage,this sensor network system can be deployed in extreme environments such as battlefields,disaster areas,underground tunnels,and even outer space.This paper uses theoretical analysis to demonstrate the system stability of the force-directed positioning algorithm and proves the feasibility and practicality of the system through simulation experiments and robot experiments.

Key words: Sensor networks, Force-directed layout, Distributed positioning, Target tracking, UWB

中图分类号: 

  • TP242
[1]WANG D,WANG H,JIANG Q L.Low power and long-distance marine environmental monitoring system based on 6LoWPAN [J].Computer Science,2020,47(S1):596-598,615.
[2]WANG L J,FANG K P,GUO H.Improved Particle Swarm Optimization Monte Carlo WSN Node Location Algorithm [J].Computer Science,2022,49(S2):882-886.
[3]HUO W L,JING T,REN S.Overview of 3D Object Detectionfor Autonomous Driving [J].Computer Science,2023,50(7):107-118.
[4]LI Y Q,BAO H,XU C.Accurate positioning of monocular inertial SLAM and UWB data fusion [J].Sensors and Microsystems,2022,41(9):125-128.
[5]LIU J W,DU X,FAN F C,et al.Design of an indoor map navigation system based on multiple sensors [J].Computer Science,2023,50(S1):879-886.
[6]WANG H,XU Y S,CAI Y F,et al.Overview of Intelligent Vehicle Multi target Detection Technology Based on Multi sensor Fusion [J].Journal of Automotive Safety and Energy Conservation,2021,12(4):440-455.
[7]QU C C,SUN W X,LI Z,et al.Research progress and prospects of plant flexible sensors [J].Journal of Agricultural Enginee-ring,2023,39(8):32-43.
[8]GOLA K K,DHINGRA M,GUPTA B,et al.An empirical study on underwater acoustic sensor networks based on localization and routing approaches[J].Advances in Engineering Software,2023,175:103319.
[9]YANG S X,GUO Y,LI N,et al.A compressed sensing multi target localization algorithm based on data fusion [J].Computer Science,2018,45(9):161-165.
[10]JIANG W C,LI L Y,LIU H C,et al.Target tracking method for area coverage in sensor networks [J].Computer Engineering and Design,2019,40(7):1840-1845.
[11]MOHAR S S,GOYAL S,KAUR R.Localization of sensor nodes in wireless sensor networks using bat optimization algorithm with enhanced exploration and exploitation characteristics [J].Journal of supercomputing,2022,78(9):11975-12023..
[12]QIAN K G,BU C F,WANG Y J,et al.A localization algorithm for wireless sensor networks based on reliable beacons and node degree estimation [J].Computer Applications,2019,39(3):817-823.
[13]SHI D X,LIU C,SHE F J,et al.A Multi UAV Collaborative Positioning Method Based on Location Confidence in GPS Rejection Environment [J].Computer Science,2022,49(4):302-311.
[14]HAQUE K F,ABDELGAWAD A,YELAMARTHI K.Com-prehensive performance analysis of zigbee communication:an experimental approach with XBee S2C module[J].Sensors,2022,22(9):3245.
[15]LIU Y,BAO Y.Real-time remote measurement of distanceusing ultra-wideband(UWB)sensors[J].Automation in Construction,2023,150:104849.
[16]WANG Z D,QIN W H.Indoor integrated positioning methodusing UWB to correct LiDAR SLAM [J].Sensors and Microsystems,2023,42(2):5.
[17]EADES P.A Heurisrics for Graph Drawing[J].Congressus Numerantium,1984,42:149-160.
[18]FRUCHTERMAN T M J,REINGOLD E M.Graph drawing byforce-directed placement[J].Software:Practice and Experience,1991,21(11):1129-1164.
[19]REDMON J,FARHADI A.YOLO9000:better,faster,stronger[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:7263-7271.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!