计算机科学 ›› 2024, Vol. 51 ›› Issue (11A): 240100120-7.doi: 10.11896/jsjkx.240100120
刘志民, 陈建二
LIU Zhimin, CHEN Jianer
摘要: 随着大数据对人们生活的影响逐渐增大,数据存储和计算需求不断增加,云计算的兴起有效地满足了这一需求。在实时性要求较高的云计算系统中,来自客户端的资源请求被视为具有截止期限和一定收益的两阶段工作,云服务器被视为两阶段机器。不同资源请求的截止期限通常不同,如果云中心能在资源请求的截止期限之前完成该请求,就可以获得相应的收益。现有的以收益最大化作为优化目标的两阶段工作调度均是在一个公共截止期限制下进行的,而实际情况往往是不同的资源请求可能有不同的截止期限。基于当前云计算应用和数据中心数据处理的需求,建立了云计算系统中工作调度的新数学模型。首次提出了具有多个截止期的两阶段工作在多处理机上的调度问题,并给出了一个近似比为(3k+∊)的多项式时间近似算法。当机器数目为固定常数时,近似比进一步降低为(k+∊),其中k是一个固定常数,即截止期的个数,∊是大于0的任意常数。针对特殊的T-处理时间大于R-处理时间模型,在单个两阶段机器上,给出了一个近似比为2的伪多项式时间近似算法,进一步降低了算法的近似比。
中图分类号:
[1]ARMBRUST M,FOX A,GRIFFITH R,et al.A view of cloud computing[J].Communications of ACM,2010,53(4):50-58. [2]RITTINGHOUSE J,RANSOME J.Cloud Computing:Imple-mentation,Management,and Security[M].CRC press,2017. [3]ZHANG Y,ZHOU Y.TransOS:a transparent computing-based operating system for the cloud[J].International Journal of Cloud Computing,2012,1(4):287-301. [4]ZHANG Y,DUAN S,ZHANG D,et al.Transparent Computing:Development and Current Status[J].Chinese Journal of Electronics,2020,29(5):793-811. [5]ZHANG Y,ZHOU Y.Separating computation and storage with storage virtualization[J].Computer Communications,2011,34(13):1539-1548. [6]POTTS C,STRUSEVICH V.Fifty years of scheduling:a survey of milestones[J].Journal of the Operational Research Society,2009,60(1):S41-S68. [7]JOHNSON S.Optimal two- and three-stageproduction schedules with setup times included[J].Naval Research Logistics Quarterly,1954,1(1):61-68. [8]GAREY M,JOHNSON D.Computers andIntractability:AGuide to the Theory of NP-Completeness.[M].San Francisco:Freeman,1979. [9]KOVALYOV M.Efficient epsilon-approximation algorithm for minimizing the makespan in a parallel two-stage system[J].Vesti Academii navuk Belaruskai SSR,Ser.Phiz.-Mat.Navuk,1985,3:119. [10]DONG J,TONG W,LUO T,et al.An FPTAS for the parallel two-stage flowshop problem[J].Theoretical Computer Science,2017,657:64-72. [11]WU G,CHEN,J,WANG J.Scheduling two-stage jobs on multiple flowshops[J].Theoretical Computer Science,2019,776:117-124. [12]WU G,CHEN J,WANG J.On scheduling multiple two-stageflowshops[J].Theoretical Computer Science,2020,818:74-82. [13]WU G,CHEN J,WANG J.On scheduling inclined jobs on multiple two-stage flowshops[J].Theoretical Computer Science,2019,786:67-77. [14]WU G,CHEN J,WANG J.Improved approximation algorithms for two-stage flowshops scheduling problem[J].Theoretical Computer Science,2020,806:509-515. [15]DONG J,JIN R,LUO T,et al.A polynomial-time approximationscheme for an arbitrary number of parallel two-stage flow-shops[J].European Journal of Operational Research,2020,281(1):16-24. [16]CONWAY R,MAXWELL W,MILLER L.Theory of scheduling[M].Courier Corporation,2003. [17]CHEKURI C,KHANNA S.A polynomial time approximationscheme for the multiple knapsack problem[J].SIAM Journal on Computing,2005,35(3):713-728. [18]CHEN L,ZHANG G.Packing groups of items into multipleknapsacks[J].ACM Transactions on Algorithms(TALG),2018,14(4):1-24. [19]CROCE F,GUPTA J,TADEI R.Minimizing tardy jobs in aflowshop with common due date[J].European Journal of Ope-rational Research,2000,120(2):375-381. [20]DAWANDE M,GAVIRNENI S,RACHAMADUGU R.Sche-duling a two-stage flowshop under makespan constraint[J].Mathematical and Computer Modelling,2006,44(1/2):73-84. [21]CHEN J,HUANG M,GUO Y.Scheduling multipletwo-Stageflowshops with a deadline[J].Theoretical Computer Science,2022,921:100-111. [22]TONG W,XU Y,ZHANG H.A polynomial-time approximationscheme for parallel two-stage flowshops under makespan constraint[J].Theoretical Computer Science,2022,922:438-446. |
|