计算机科学 ›› 2024, Vol. 51 ›› Issue (11A): 231100054-7.doi: 10.11896/jsjkx.231100054

• 信息安全 • 上一篇    下一篇

基于改进鸽群算法组合优化的入侵检测模型

王春东, 雷杰斌   

  1. 天津理工大学计算机科学与工程学院 天津 300384
    计算机病毒防治技术国家工程实验室 天津 300384
  • 出版日期:2024-11-16 发布日期:2024-11-13
  • 通讯作者: 王春东(michael3769@163.com)
  • 基金资助:
    国家自然科学基金联合基金(U1536122);天津市科委重大专项(15ZXDSGX00030)

Intrusion Detection Model Based on Combinatorial Optimization of Improved Pigeon SwarmAlgorithm

WANG Chundong, LEI Jiebin   

  1. School of Computer Science and Engineering,Tianjin University of Technology,Tianjin 300384,China
    National Engineering Laboratory for Computer Virus Prevention and Control Technology,Tianjin 300384,China
  • Online:2024-11-16 Published:2024-11-13
  • About author:WANG Chundong,born in 1969,Ph.D,professor,is a senior member of CCF(No.16230M).His main research interests include network information security,mobile intelligent terminal security,public opinion analysis and control,Internet of Things security and security situation awareness.
  • Supported by:
    Joint Foundation Program of National Natural Science Foundation of China(U1536122) and Tianjin Municipal Science and Technology Commission Major Project(15ZXDSGX00030).

摘要: 入侵检测作为一种保护网络免受攻击的安全防御技术,在网络安全领域中扮演着重要的角色。研究人员利用机器学习技术提出了不同的网络入侵检测模型。然而,特征冗余和机器学习参数优化问题仍然是入侵检测系统面临的挑战。现有研究均将二者视为独立问题,分别优化。但机器学习参数与训练数据中的特征密切相关,特征集的改变很可能引起最优机器学习参数的变化。针对这一问题,提出了一种基于改进鸽群算法组合优化的入侵检测方法(ICOPIO)。该方法可以同时实现特征筛选和机器学习参数优化,避免了人为参数设置的干扰,减少了冗余和无关特征的影响,进一步提高了入侵检测模型的性能。此外,还利用Spark对ICOPIO进行并行化处理,提高了ICOPIO的效率。最后,使用NSL-KDD和UNSW-NB15两个入侵检测标准数据集对模型进行了评估,与现有的几种相关方法相比,所提出的模型在TPR、FPR、平均准确率上都取得了最好的结果,且证明了ICOPIO具有良好的可扩展性。

关键词: 特征选择, 参数优化, 入侵检测, 并行化, 鸽群算法

Abstract: Intrusion detection,as a security defense technique to protect the network from attacks,plays an important role in the field of network security.Researchers have proposed different network intrusion detection models using machine learning techniques.However,the problems of feature redundancy and machine learning parameter optimization are still challenges for intrusion detection systems.Existing studies considerthe two as independent problems and optimized them separately.However,the machine learning parameters are closely related to the features in the training data,and changes in the feature set are likely to cause changes in the optimal machine learning parameters.To address this problem,an intrusion detection method based on combined optimization of improved pigeon flocking algorithm(ICOPIO)is proposed.It can simultaneously achieve feature screening and machine learning parameter optimization,avoiding the interference of human parameter settings,reducing the influence of redundant and irrelevant features,and further improving the performance of the intrusion detection model.In addition,Spark is used to parallelize ICOPIO to improve the efficiency of ICOPIO.Finally,two intrusion detection standard datasets,NSL-KDD and UNSW-NB15,are used to evaluate the model,and by comparing with several existing related methods,the proposed model achieves the best results in the evaluation metrics of TPR,FPR,and average accuracy,and it proves that ICOPIO has good scalability.

Key words: Feature selection, Parameter optimization, Intrusion detection, Parallelization, Pigeon swarm algorithm

中图分类号: 

  • TP393
[1]NASIR M H,KHAN S A,KHAN M M,et al.Swarm intelli-gence inspired intrusion detection systems-a systematic literature review[J].Computer Networks,2022,205:108708.
[2]DAMTEW Y G,CHEN H,YUAN Z.Heterogeneous Ensemble Feature Selection for Network Intrusion Detection System[J].International Journal of Computational Intelligence Systems,2023,16(1):9.
[3]DAMTEW Y G,CHEN H,YUAN Z.Heterogeneous Ensemble Feature Selection for Network Intrusion Detection System[J].International Journal of Computational Intelligence Systems,2023,16(1):9.
[4]ALQARNI A A.Toward support-vector machine-based ant col-ony optimization algorithms for intrusion detection[J].Soft Computing,2023,27(10):6297-6305.
[5]PAN J S,TIAN A Q,CHU S C,et al.Improved binary pigeon-inspired optimization and its application for feature selection[J].Applied Intelligence,2021,51(12):8661-8679.
[6]KARLUPIA N,ABROL P.Wrapper-based optimized feature selection using nature-inspired algorithms[J].Neural Computing and Applications,2023,35(17):12675-12689.
[7]TALITA A S,NATAZA O S,RUSTAM Z.Naïve bayes classifier and particle swarm optimization feature selection method for classifying intrusion detection system dataset[C]//Journal of Physics:Conference Series.IOP Publishing,2021.
[8]DAI M.Based on the parallel feature selection and classification methods of network intrusion detection [J].Computer engineering and design,2019,40(3):654-661.
[9]ALMASOUDY F H,AL-YASEEN W L,IDREES A K.Differential evolution wrapper feature selection for intrusion detection system[J].Procedia Computer Science,2020,167:1230-1239.
[10]HASSAN I H,ABDULLAHI M,ALIYU M M,et al.An im-proved binary manta ray foraging optimization algorithm based feature selection and random forest classifier for network intrusion detection[J].Intelligent Systems with Applications,2022,16:200114.
[11]STANLEY K O,CLUNE J,LEHMAN J,et al.Designing neural networks through neuroevolution[J].Nature Machine Intelligence,2019,1(1):24-35.
[12]DANG J W,TAN L.Improved Drosophila Algorithm to Optimize Weighted Extreme Learning Machine for Intrusion detection [J].Journal of System Simulation,2021,33(2):331-338.
[13]SERHAT K.PSO+ GWO:a hybrid particle swarm optimization and Grey Wolf optimization based Algorithm for fine-tuning hyper-parameters of convolutional neural networks for Cardiovascular Disease Detection[J].Journal of Ambient Intelligence and Humanized Computing,2023,14(1):87-97.
[14]NIU X,ZHENG Y,FOURNIER-VIGER P,et al.Parallel grid-based density peak clustering of big trajectory data[J].Applied Intelligence,2021:1-16.
[15]LOU P,LU G,JIANG X,et al.Cyber intrusion detectionthrough association rule mining on multi-source logs[J].Applied Intelligence,2021,51:4043-4057.
[16]CHEN H,LIU D,HAN L,et al.A spark-based distributeddragonfly algorithm for feature selection[C]//2020 15th Inter-national Conference on Computer Science & Education(ICCSE).IEEE,2020:419-423.
[17]DUAN H B,YE F.Research Progress of pigeon swarm optimization algorithm [J].Journal of Beijing University of Technology,2017,43(1):1-7.
[18]LIANG X W,JIANG A P,WANG G T,et al.Multi-residue signal Recognition Technique of Sealed Relays based on Parameter Optimization Decision Tree Algorithm[J].Journal of Electronic Measurement & Instrument,20,34(1):178-185.
[19]HARRIS A,MINTARIA A E,STIAWAN D,et al.Improvingthe anomaly detection by combining pso search methods and j48 algorithm[C]//2020 7th International Conference on Electrical Engineering,Computer Sciences and Informatics(EECSI).IEEE,2020:119-126.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!