计算机科学 ›› 2024, Vol. 51 ›› Issue (11A): 240200098-7.doi: 10.11896/jsjkx.240200098
李鉴秋1, 刘万平1, 黄东2, 张琼3
LI Jianqiu1, LIU Wanping1, HUANG Dong2, ZHANG Qiong3
摘要: 近年来,新型恶意软件数量越来越多,而传统的签名式恶意软件检测方法在面对这些新恶意软件时逐渐失效,亟需开发出新的检测方法。针对这一问题,提出了一种基于多模态的动态恶意软件检测方法,该方法使用API调用序列作为特征,并将API特征映射为多模态信息,使用2种不同的网络模型对多模态信息进行处理,并获得检测结果。通过在多个公开的数据集上对所提方法进行了测试,获得最高99.98%的检测准确度。实验表明,所提方法具有高准确率以及良好的泛化能力。由于该方法无需任何反汇编操作,因此可以对使用了加壳技术的恶意软件进行检测,这一特点有效提高了检测方法的鲁棒性。
中图分类号:
[1]GENG J,WANG J,FANG Z,et al.A survey of strategy-driven evasion methods for PE malware:Transformation,concealment,and attack[J].Computers & Security,2024,137:103595. [2]LIU W,ZHONG S.Web malware spread modelling and optimalcontrol strategies[J].Scientific Reports,2017,7:42308. [3]NI S,QIAN Q,ZHANG R.Malware identification using visua-lization images and deep learning[J].Computers & Security,2018,77:871-885. [4]MANKU G S,JAIN A,DAS SARMA A.Detecting near-duplicates for web crawling[C]//Proceedings of the 16th International Conference on World Wide Web.2007:141-150. [5]GIBERT D,MATEU C,PLANES J.HYDRA:A multimodaldeep learning framework for malware classification[J].Compu-ters & Security,2020,95:101873. [6]SUN G,QIAN Q.Deep learning and visualization for identifying malware families[J].IEEE Transactions on Dependable and Secure Computing,2018,18(1):283-295. [7]ZHANG Y,WALLACE B C.A Sensitivity Analysis of(andPractitioners' Guide to) Convolutional Neural Networks for Sentence Classification[C]//Proceedings of the Eighth International Joint Conference on Natural Language Processing(Vo-lume 1:Long Papers).2017:253-263. [8]DENG J,DONG W,SOCHER R,et al.Imagenet:A large-scale hierarchical image database[C]//2009 IEEE Conference on Computer Vision and Pattern Recognition.IEEE,2009:248-255. [9]RONEN R,RADU M,FEUERSTEIN C,et al.Microsoft mal-ware classification challenge[J].arXiv:1802.10135,2018. [10]MANIRIHO P,MAHMOOD A N,CHOWDHURY M J M.MalDetConv:Automated Behaviour-based Malware Detection Framework Based on Natural Language Processing and Deep Learning Techniques[J].arXiv:2209.03547,2022. [11]ALLAN N,NGUBIRI J.Windows PE API calls for malicious and benigin programs[J].International Journal of Technology and Management,2019,3(2):1-9. [12]KI Y,KIM E,KIM H K.A novel approach to detect malware based on API call sequence analysis[J].International Journal of Distributed Sensor Networks,2015,11(6):659101. [13]Alibaba Cloud Malware Detection Based on Behaviors [EB/OL].[2018].https://tianchi.aliyun.com/getStart/information.htm?raceId=231694. [14]SIMONYAN K,ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[C]//3rd International Conference on Learning Representations(ICLR 2015).Computational and Biological Learning Society,2015. [15]HUANG G,LIU Z,VAN DER MAATEN L,et al.Densely con-nected convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:4700-4708. [16]HE K,ZHANG X,REN S,et al.Deep residual learning forimage recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:770-778. [17]AMER E,ZELINKA I.A dynamic Windows malware detection and prediction method based on contextual understanding of API call sequence[J].Computers & Security,2020,92:101760. [18]AMER E,EL-SAPPAGH S,HU J W.Contextual identification of windows malware through semantic interpretation of api call sequence[J].Applied Sciences,2020,10(21):7673. [19]TRAN T K,SATO H.NLP-based approaches for malware classification from API sequences[C]//2017 21st Asia Pacific Symposium on Intelligent and Evolutionary Systems(IES).IEEE,2017:101-105. [20]GAO M,WU P,PAN L.Malware Detection with Limited Supervised Information via Contrastive Learning on API Call Sequences[C]//International Conference on Information and Communications Security.Cham:Springer International Publishing,2022:492-507. [21]XU A,CHEN L,KUANG X,et al.A hybrid deep learning mo-del for malicious behavior detection[C]//2020 IEEE 6th Intl Conference on Big Data Security on Cloud(BigDataSecurity),IEEE International Conference on High Performance and Smart Computing,(HPSC) and IEEE Intl Conference on Intelligent Data and Security(IDS).IEEE,2020:55-59. [22]ZHANG Z,LI Y,DONG H,et al.Spectral-based directed graph network for malware detection[J].IEEE Transactions on Network Science and Engineering,2020,8(2):957-970. [23]ZHANG S,WU J,ZHANG M,et al.Dynamic Malware Analysis Based on API Sequence Semantic Fusion[J].Applied Sciences,2023,13(11):6526. [24]ZHANG Z,LI Y,WANG W,et al.Malware detection with dynamic evolving graph convolutional networks[J].International Journal of Intelligent Systems,2022,37(10):7261-7280. |
|