计算机科学 ›› 2024, Vol. 51 ›› Issue (12): 303-309.doi: 10.11896/jsjkx.231200041
钟凯1, 郭春1, 李显超2, 申国伟1
ZHONG Kai1, GUO Chun1, LI Xianchao2, SHEN Guowei1
摘要: 挖矿恶意软件以盗用设备的计算资源来挖掘加密货币为目标,在大量消耗计算资源的同时还严重危害网络安全。当前的挖矿恶意软件动态检测方法主要依据样本长时间运行过程中收集的主机行为或网络流量来进行检测,未能兼顾检测的及时性和准确性。通过对挖矿恶意软件运行初期的DLL调用和API返回值进行分析,提出一种API句嵌入方法SDR,并基于SDR进一步提出一种基于SDR的挖矿恶意软件早期检测方法CEDS。CEDS利用SDR将软件运行初期的API名称序列、API返回值序列和DLL序列转化为句向量序列,使用TextCNN建立模型来进行挖矿恶意软件的早期检测。实验结果表明,CEDS能够以0.5106s的平均时长和96.75%的准确率判别一个软件样本是挖矿恶意软件还是良性软件。
中图分类号:
[1]TEKINER E,ACAR A,ULUAGAC A S,et al.SoK:cryptojacking malware[C]//IEEE European Symposium on Security and Privacy.2021:120-139. [2]Malwarebytes.2022 THREAT REVIEW[EB/OL].[2023-08-18].https://www.malwarebytes.com/resources/malwarebytes-threat-review-2022/index.html. [3]AHMAD A,SHAFIUDDIN W,KAMA M N,et al.A NewCryptojacking Malware Classifier Model Based on Dendritic Cell Algorithm[C]//International Conference on Vision,Image and Signal Processing.2019:84:1-84. [4]MUÑOZ J Z I,SUÁREZ-VARELA J,BARLET-ROS P.Detecting cryptocurrency miners with NetFlow/IPFIX network mea-surements[C]//2019 IEEE International Symposium on Mea-surements & Networking(M&N).IEEE,2019:1-6. [5]CAPROLU M,RAPONI S,OLIGERI G,et al.Cryptominingmakes noise:Detecting cryptojacking via Machine Learning[J].Computer Communications,2021,171:126-139. [6]TANANA D,TANANA G.Advanced behavior-based technique for cryptojacking malware detection[C]//International Confe-rence on Signal Processing and Communication Systems.2019:84:1-84. [7]BERECZ G J,CZIBULA I G.Hunting traits for cryptojackers[C]//Proceedings of the 16th International Joint Conference on e-Business and Telecommunications.2019:386-393. [8]DARABIAN H,HOMAYOUNOOT S,DEHGHANTANHAA,et al.Detecting cryptomining malware:a deep learning approach for static and dynamic analysis[J].Journal of Grid Computing,2020,18(2):293-303. [9]MANI G,PASUMARTI V,BHARGAVA B,et al.Decryptopro:deep learning based cryptomining malware detection using performance counters[C]//2020 IEEE International Conference on Autonomic Computing and Self-Organizing Systems(AC-SOS).IEEE,2020:109-118. [10]KARN R R,KUDVA P,HUANG H,et al.Cryptomining detection in container clouds using system calls and explainable machine learning[J].IEEE Transactions on Parallel and Distributed Systems,2020,32(3):674-691. [11]SUN P F,LYU M D,LI H,et al.An early stage convolutional feature extracting method using for mining traffic detection[J].Computer Communications,2022,193:346-354. [12]CAO C B,GUO C,SHEN G W,et al.Cryptomining Malware Early Detection Method in Behavioral Diversity Period[J].Acta Electronica Sinica,2023,51(7):1850-1858. [13]CAO C B,GUO C,LI X C,et al.Cryptomining Malware Early Detection Method Based on AECD Embedding[J].Journal of Frontiers of Computer Science and Technology,2024,18(4):1083-1093. [14]Microsoft.Dynamic-Link Libraries(Dynamic-Link Libraries)[EB/OL].[2023-08-18].https://learn.microsoft.com/en-us/windows/win32/dlls/dynamic-link-libraries. [15]IJAZ M,DURAD M H,ISMAIL M.Static and Dynamic Malware Analysis Using Machine Learning[C]//2019 16th International Bhurban Conference on Applied Sciences and Technology(IBCAST- 2019).2019. [16]Microsoft.How to:Call Windows APIs(Visual Basic)[EB/OL].[2023-03-30].https://learn.microsoft.com/en-us/dotnet/visual-basic/programming-guide/com-interop/how-to-call-windows-apis. [17]SHANNON C E.A Mathematical Theory of Communication[J].The Bell System Technical Journal,1948,27(3):379-423. [18]Microsoft.Methods(C# Programming Guide)[EB/OL].[2023-03-30].https://learn.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/methods. [19]MIKOLOVT,SUTSKEVER I,CHEN K,et al.Distributed representations of words and phrases and their compositionality[C]//Proceedings of the 26th International Conference on Neural Information Processing Systems. Curran Associates Inc., 2013:3111-3119. [20]KIM Y.Convolutional neural networks for sentence classification[J].arXiv:1408.5882,2014. |
|