计算机科学 ›› 2025, Vol. 52 ›› Issue (4): 255-261.doi: 10.11896/jsjkx.240100155
杨进才1, 余漠洋1, 胡满1, 肖明2
YANG Jincai1, YU Moyang1, HU Man1, XIAO Ming2
摘要: 话语标记(Discourse Markers)是一种语言标记,具有组织语篇、引导指意、显示情感的作用,因而受到语言学界的广泛关注。对话语标记及其类别的准确识别,对于篇章理解、说话人意图和情感的把握有重要作用。近十年来,国内外学者对话语标记的功能、特征、来源和系统分类展开研究并取得了丰富的成果。然而,因话语标记形式多变、来源多样、特征抽象、变体繁多,机器自动识别的难度较大。对此,以话题性话语标记为研究对象,提出一种融合外部语言学特征的NFLAT指针网络模型,实现对语篇中话语标记的自动识别和分类。经实验检验,训练后模型对话题性话语标记的识别及分类精确率(P值)达94.55%。
中图分类号:
[1]XIAO M.Research hotspots and development analysis of dis-course markers [J].Central China Humanities,2021,13(3):160-169. [2]ZHOU M Q.Research on the system of discourse markers and cognition of modern Chinese[M].Beijing:China Social Science Press,2022:1-23. [3]LIU L Y.Research on Chinese discourse markers[M].Beijing:Beijing Language and Culture University Press,2011:26-38. [4]XU J J.The discourse marker RANHOU and its functions in spoken Chinese [J].Foreign Languages Research,2009(2):9-15,112. [5]LI Z J.Chinese new function words [M].Shanghai:Shanghai Education Press,2011. [6]ZHOU M Q.An overview of the system of modern Chinese discourse markers[J].Journal of Zhejiang International Studies University,2020(1):80-88,108. [7]LI X M.A study on Chinese metalinguistic markers[M]//Beijing:China Social Science Press,2011:104-137. [8]LI Z P.A study of discourse markers in modern Chinese language[M]//Beijing:World Publishing Corporation,2015:78-83. [9]XI J G.Pragmatic markers in English and Chinese:A cognitive study[M]//Hangzhou:Zhejiang University Press,2009:52-65. [10]ZHAO Y Y.Design of discourse marker feature recognition system based on multi-dimensional spectrogram[J].Modern Electronics Technique,2021,44(12):83-86. [11]XIAO M,XIAO Y.Research on interpretability recognition ofChinese discourse markers based on dependency graph[J].Journal of Central China Normal University(Natural Science),2023,57(4):528-538. [12]QI P N,LIAO Y L,QIN B.Survey on deep learning for Chinese named entity recognition[J].Journal of Chinese Computer Systems,2023,44(9):1857-1868. [13]DONG C,ZHANG J,ZONG C,et al.Character-based LSTM-CRF with radical-level features for Chinese named entity recognition[C]//Proceedings 24 ICCPOL.Springer International Publishing,2016:239-250. [14]MENG Y X,WU W,WANG F,et al.Glyce:Glyph-vectors for Chinese Character Representations[C]//Proceedings of the 33rd International Conference on Neural Information Processing Systems.2019:2746-2757. [15]WU S,SONG X N,FENG Z H.MECT:Multi-Metadata Embedding based Cross-Transformer for Chinese Named Entity Recognition[J].arXiv:2107.05418,2021. [16]NIE Y Y,TIAN Y H,WAN X,et al.Named Entity Recognition for Social Media Texts with Semantic Augmentation[J].arXiv:2010.15458,2020. [17]LIAO M,JIA Z,LI T R,et al.Chinese Named Entity Recognition Based on Label Information Fusion and Multi-Task Lear-ning[J].Computer Science,2024,51(3):198-204. [18]WU S,SONG X N,FENG Z H,et al.Non-flat-lattice transfor-mer for chinese named entity recognition [J].arXiv:2205.05832,2022. [19]LI X,YAN H,QIU X,et al.FLAT:Chinese NER Using Flat-Lattice Transformer[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics.2020. [20]DAI Z H,YANG Z L,YANG Y M,et al.Transformer-XL:Attentive Language Models beyond a Fixed-Length Context [C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics.2019:2978-2988. [21]VASWANI A,SHAZEER N,PARMAR N,et al.Attention isall you need[C]//Proceedings of the 31st International Confe- rence on Neural Information Processing Systems.2017:6000-6010. [22]YAN H,DENG B C,LI X N,et al.TENER:Adapting Transformer Encoder for Named Entity Recognition[J].arXiv:1911.04474,2019. [23]CHE W X,FENG Y L,QIN L B,et al.N-LTP:An Open-source Neural Language Technology Platform for Chinese[C]//Proceedings of Association for Computational Linguistics.2021:42-49. [24]SU J L,MURTADHA A,PAN S F,et al.Global Pointer:Novel Efficient Span-based Approach for Named Entity Recognition[J].arXiv:2208.03054,2022. [25]ORIOL V,MEIRE F,NAVDEEP J.Pointer networks[J].ar-Xiv:1506.03134,2015. [26]DENG L,QI P H,LIU Z P,et al.BGPNER:A BERT-based global pointer network for named entity-relation joint extraction method[J].Computer Science,2023,50(3):42-48. [27]SU J L,LU Y,PAN S F,et al.Reformer:Enhanced transformer with rotary position embedding[J].arXiv:2104.09864,2021. [28]YANG Z,DAI Z,YANG Y,et al.Xlnet:Generalized autoregressive pretraining for language understanding[C]//Proceedings of the 33rd International Conference on Neural Information Processing Systems.2019:5753-5763. [29]BROWN T,MANN B,RYDER N,et al.Language models arefew-shot learners[J].Advances in Neural Information Proces-sing Systems,2020,33:1877-1901. |
|