Computer Science ›› 2025, Vol. 52 ›› Issue (4): 255-261.doi: 10.11896/jsjkx.240100155
• Artificial Intelligence • Previous Articles Next Articles
YANG Jincai1, YU Moyang1, HU Man1, XIAO Ming2
CLC Number:
[1]XIAO M.Research hotspots and development analysis of dis-course markers [J].Central China Humanities,2021,13(3):160-169. [2]ZHOU M Q.Research on the system of discourse markers and cognition of modern Chinese[M].Beijing:China Social Science Press,2022:1-23. [3]LIU L Y.Research on Chinese discourse markers[M].Beijing:Beijing Language and Culture University Press,2011:26-38. [4]XU J J.The discourse marker RANHOU and its functions in spoken Chinese [J].Foreign Languages Research,2009(2):9-15,112. [5]LI Z J.Chinese new function words [M].Shanghai:Shanghai Education Press,2011. [6]ZHOU M Q.An overview of the system of modern Chinese discourse markers[J].Journal of Zhejiang International Studies University,2020(1):80-88,108. [7]LI X M.A study on Chinese metalinguistic markers[M]//Beijing:China Social Science Press,2011:104-137. [8]LI Z P.A study of discourse markers in modern Chinese language[M]//Beijing:World Publishing Corporation,2015:78-83. [9]XI J G.Pragmatic markers in English and Chinese:A cognitive study[M]//Hangzhou:Zhejiang University Press,2009:52-65. [10]ZHAO Y Y.Design of discourse marker feature recognition system based on multi-dimensional spectrogram[J].Modern Electronics Technique,2021,44(12):83-86. [11]XIAO M,XIAO Y.Research on interpretability recognition ofChinese discourse markers based on dependency graph[J].Journal of Central China Normal University(Natural Science),2023,57(4):528-538. [12]QI P N,LIAO Y L,QIN B.Survey on deep learning for Chinese named entity recognition[J].Journal of Chinese Computer Systems,2023,44(9):1857-1868. [13]DONG C,ZHANG J,ZONG C,et al.Character-based LSTM-CRF with radical-level features for Chinese named entity recognition[C]//Proceedings 24 ICCPOL.Springer International Publishing,2016:239-250. [14]MENG Y X,WU W,WANG F,et al.Glyce:Glyph-vectors for Chinese Character Representations[C]//Proceedings of the 33rd International Conference on Neural Information Processing Systems.2019:2746-2757. [15]WU S,SONG X N,FENG Z H.MECT:Multi-Metadata Embedding based Cross-Transformer for Chinese Named Entity Recognition[J].arXiv:2107.05418,2021. [16]NIE Y Y,TIAN Y H,WAN X,et al.Named Entity Recognition for Social Media Texts with Semantic Augmentation[J].arXiv:2010.15458,2020. [17]LIAO M,JIA Z,LI T R,et al.Chinese Named Entity Recognition Based on Label Information Fusion and Multi-Task Lear-ning[J].Computer Science,2024,51(3):198-204. [18]WU S,SONG X N,FENG Z H,et al.Non-flat-lattice transfor-mer for chinese named entity recognition [J].arXiv:2205.05832,2022. [19]LI X,YAN H,QIU X,et al.FLAT:Chinese NER Using Flat-Lattice Transformer[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics.2020. [20]DAI Z H,YANG Z L,YANG Y M,et al.Transformer-XL:Attentive Language Models beyond a Fixed-Length Context [C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics.2019:2978-2988. [21]VASWANI A,SHAZEER N,PARMAR N,et al.Attention isall you need[C]//Proceedings of the 31st International Confe- rence on Neural Information Processing Systems.2017:6000-6010. [22]YAN H,DENG B C,LI X N,et al.TENER:Adapting Transformer Encoder for Named Entity Recognition[J].arXiv:1911.04474,2019. [23]CHE W X,FENG Y L,QIN L B,et al.N-LTP:An Open-source Neural Language Technology Platform for Chinese[C]//Proceedings of Association for Computational Linguistics.2021:42-49. [24]SU J L,MURTADHA A,PAN S F,et al.Global Pointer:Novel Efficient Span-based Approach for Named Entity Recognition[J].arXiv:2208.03054,2022. [25]ORIOL V,MEIRE F,NAVDEEP J.Pointer networks[J].ar-Xiv:1506.03134,2015. [26]DENG L,QI P H,LIU Z P,et al.BGPNER:A BERT-based global pointer network for named entity-relation joint extraction method[J].Computer Science,2023,50(3):42-48. [27]SU J L,LU Y,PAN S F,et al.Reformer:Enhanced transformer with rotary position embedding[J].arXiv:2104.09864,2021. [28]YANG Z,DAI Z,YANG Y,et al.Xlnet:Generalized autoregressive pretraining for language understanding[C]//Proceedings of the 33rd International Conference on Neural Information Processing Systems.2019:5753-5763. [29]BROWN T,MANN B,RYDER N,et al.Language models arefew-shot learners[J].Advances in Neural Information Proces-sing Systems,2020,33:1877-1901. |
[1] | JIANG Wenwen, XIA Ying. Improved U-Net Multi-scale Feature Fusion Semantic Segmentation Network for RemoteSensing Images [J]. Computer Science, 2025, 52(5): 212-219. |
[2] | LI Xiwang, CAO Peisong, WU Yuying, GUO Shuming, SHE Wei. Study on Security Risk Relation Extraction Based on Multi-view IB [J]. Computer Science, 2025, 52(5): 330-336. |
[3] | LI Xiaolan, MA Yong. Study on Lightweight Flame Detection Algorithm with Progressive Adaptive Feature Fusion [J]. Computer Science, 2025, 52(4): 64-73. |
[4] | DENG Ceyu, LI Duantengchuan, HU Yiren, WANG Xiaoguang, LI Zhifei. Joint Inter-word and Inter-sentence Multi-relationship Modeling for Review-basedRecommendation Algorithm [J]. Computer Science, 2025, 52(4): 119-128. |
[5] | WANG Tao, BAI Xuefei, WANG Wenjian. Selective Feature Fusion for 3D CT Image Segmentation of Renal Cancer Based on Edge Enhancement [J]. Computer Science, 2025, 52(3): 41-49. |
[6] | WANG Mengwei, YANG Zhe. Speaker Verification Method Based on Sub-band Front-end Model and Inverse Feature Fusion [J]. Computer Science, 2025, 52(3): 214-221. |
[7] | CHEN Guangyuan, WANG Zhaohui, CHENG Ze. Multi-view Stereo Reconstruction with Context-guided Cost Volume and Depth Refinemen [J]. Computer Science, 2025, 52(3): 231-238. |
[8] | ZHU Xiaoyan, WANG Wenge, WANG Jiayin, ZHANG Xuanping. Just-In-Time Software Defect Prediction Approach Based on Fine-grained Code Representationand Feature Fusion [J]. Computer Science, 2025, 52(1): 242-249. |
[9] | LI Xin, PU Yuanyuan, ZHAO Zhengpeng, LI Yupan, XU Dan. Image Arbitrary Style Transfer via Artistic Aesthetic Enhancement [J]. Computer Science, 2024, 51(9): 129-139. |
[10] | LIU Qian, BAI Zhihao, CHENG Chunling, GUI Yaocheng. Image-Text Sentiment Classification Model Based on Multi-scale Cross-modal Feature Fusion [J]. Computer Science, 2024, 51(9): 258-264. |
[11] | LIU Sichun, WANG Xiaoping, PEI Xilong, LUO Hangyu. Scene Segmentation Model Based on Dual Learning [J]. Computer Science, 2024, 51(8): 133-142. |
[12] | WANG Chao, TANG Chao, WANG Wenjian, ZHANG Jing. Infrared Human Action Recognition Method Based on Multimodal Attention Network [J]. Computer Science, 2024, 51(8): 232-241. |
[13] | CAI Wenliang, HUANG Jun. Lane Detection Method Based on RepVGG [J]. Computer Science, 2024, 51(7): 236-243. |
[14] | LI Guo, CHEN Chen, YANG Jing, QUN Nuo. Study on Tibetan Short Text Classification Based on DAN and FastText [J]. Computer Science, 2024, 51(6A): 230700064-5. |
[15] | PENG Bo, LI Yaodong, GONG Xianfu, LI Hao. Method for Entity Relation Extraction Based on Heterogeneous Graph Neural Networks and TextSemantic Enhancement [J]. Computer Science, 2024, 51(6A): 230700071-5. |
|