计算机科学 ›› 2025, Vol. 52 ›› Issue (6): 286-296.doi: 10.11896/jsjkx.240300146
崔克彬1,2, 胡真真1
CUI Kebin1,2, HU Zhenzhen1
摘要: 为解决绝缘子缺陷样本数量少且缺陷目标小导致目前绝缘子缺陷检测精度偏低这一问题,提出一种结合CNN与Transformer的小样本目标检测模型(C-TFSIDD),通过融合图像局部和全局特征来更有效地实现绝缘子缺陷检测。首先,采用融合CNN局部细节捕捉能力与Transformer全局信息整合能力的Next-ViT作为特征提取模块,精准捕获绝缘子图像局部和全局特征信息;其次,采用改进路径聚合特征金字塔网络(Path Aggregation Feature Pyramid Network,PAFPN)进行双向多尺度特征融合,增强底层特征表示,以改善小目标的检测效果;最后,提出一个基于度量的判别性损失函数,在微调阶段优化分类器学习更具判别性的特征表示,以增加类别之间的可分性,减少类内变化的影响。在两个公开的绝缘子缺陷数据集上进行训练和评估,实验结果表明,与基线模型TFA相比,C-TFSIDD在样本为5shot,10shot,20shot的检测结果分别提升28.7%,35.5%,47.7%;与小样本目标检测模型FSCE相比,C-TFSIDD分别提升21.8%,26.7%,21.1%。结果表明,C-TFSIDD能有效提升小样本条件下的绝缘子缺陷检测精度。
中图分类号:
[1]LIU C Y,WU Y Q.Research Progress of Vision DetectionMethods Based on Deep Learning for Transmission Lines[J].Proceedings of the CSEE,2023,43(19):7423-7446. [2]ZHAO Z B,JIANG Z G,LI Y X,et al.Overview of visual defect detection of transmission line components[J].Journal of Image and Graphics,2021,26(11):2545-2560. [3]LIU Y,HUANG X.Efficient Cross-Modality Insulator Aug-mentation for Multi-Domain Insulator Defect Detection in UAV Images[J].Sensors,2024,24(2):428. [4]MA B,FU Y K,WANG C P,et al.High Performance lnsulators Location Scheme Based on YOLOv4 with GDloU Loss Function[J].Computer Science,2022,49(S1):412-417. [5]REDMON J,DIVVALA S,GIRSHICK R,et al.You only look once:Unified,real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:779-788. [6]ZHAO W Q,CHENG X F,ZHAO Z B,et al.Insulator recognition based on attention mechanism and Faster RCNN[J].CAAI Transactions on Intelligent Systems,2020,15(1):92-98. [7]REN S,HE K,GIRSHICK R,et al.Faster R-CNN:Towards real-time object detection with region proposal networks[C]//Proceedings of the 29th International Conference on Neural Information Processing Systems.Cambridge.MA:MIT,2015:91-99. [8]LIU J H,ZHAO Z,FU J R,et al.Active small sample learning based the pipe weld defect detection method[J].Chinese Journal of Scientific Instrument,2022,43(11):252-261. [9]ZHAO Z F,HUANG J H,LUO H J,et al.Simulation Research on Ultrasonic Total Focus Method Detection of Internal Defects of Composite Insulators[J].Piezoelectrics and Acoustooptics,2024,46(1):136-142. [10]WANG X,HUANG T E,DARRELL T,et al.Frustratingly simplefew-shot object detection[J].arXiv:2003.06957,2020. [11]LI J,XIA X,LI W,et al.Next-vit:Next generation vision transformer for efficient deployment in realistic industrial scenarios[J].arXiv:2207.05501,2022. [12]LIU S,QI L,QIN H,et al.Path aggregation network for instance segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:8759-8768. [13]ZHANG T,ZHANG X,ZHU P,et al.Generalized few-shot object detection in remote sensing images[J].ISPRS Journal of Photogrammetry and Remote Sensing,2023,195:353-364. [14]KÖHLER M,EISENBACH M,GROSS H M.Few-shot object detection:A comprehensive survey[J].arXiv:2112.11699,2021. [15]SHI Y D,WANG H M,JING C,et al.A Few-Shot Defect Detection Method for Transmission Lines Based on Meta-Attention and Feature Reconstruction[J].Applied Sciences,2023,13(10):5896. [16]ZHAI Y J,YANG K,WANG Q M,et al.Disc Insulator Defect Detection Based on Mixed Sample Transfer Learning[J].Proceedings of the CSEE,2023,43(7):2867-2877. [17]CUI K B,PAN F.A CycleGAN small sample library amplification method for faulty insulator detection[J].Computer Engineering & Science,2022,44(3):509-515. [18]KARLINSKY L,SHTOK J,HARARY S,et al.Repmet:Representative-based metric learning for classification and few-shot object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2019:5197-5206. [19]EVERINGHAM M,VAN GOOL L,WILLIAMS C K I,et al.The pascal visual object classes(VOC) challenge[J].International Journal of Computer Vision,2010,88:303-338. [20]LIU K P,LI B Q,QIN L,et al.Review of Application Research of Deep Learning Object Detection Algorithms in Insulator Defect Detection of Overhead Transmission Lines[J].High Vol-tage Engineering,2023,49(9):3584-3595. [21]ZHOU L J,MAO J N.Vision Transformer-based recognitiontasks:a critical review[J].Journal of Image and Graphics,2023,28(10):2969-3003. [22]VASWANI A,SHAZEER N,PARMAR N,et al.Attention isall you need[C]//Proceedings of the 31st International Confe-rence on Neural Information Processing Systems.Red Hook,NY:Curran Associates Inc.,2017:6000-6010. [23]XI Y,ZHOU K,MENG L W,et al.Transmission Line Insulator Defect Detection Based on Swin Transformer and Context[J].Machine Intelligence Research,2023,20:729-740. [24]GUO J,LI T,DU B.Segmentation Head Networks with Har-nessing Self-Attention and Transformer for Insulator Surface Defect Detection[J].Applied Sciences,2023,13(16):9109. [25]DU Z W,ZHOU H,LI C Y,et al.Small Object Detection Based on Deep Convolutional Neural Networks:A Review[J].Computer Science,2022,49(12):205-218. [26]ZHAO Y,YANG L.Distance metric learning based on the class center and nearest neighbor relationship[J].Neural Networks,2023,164:631-644. [27]LIN T Y,GOYAL P,GIRSHICK R,et al.Focal loss for dense object detection[C]//Proceedings of the IEEE International Conference on Computer Vision.2017:2980-2988. [28]RAIMUNDO A.Insulator data set-Chinese power line insulator dataset(CPLID)[DB/OL].https://github.com/InsulatorData/InsulatorDataSet. [29]DENG J H,GUO W Q,CHEN H J,et al.Few-shot diatom detection combining multi-scale multi-head self-attention and online hard example mining[J].Journal of Computer Applications,2022,42(8):2593-2600. [30]SUN B,LI B,CAI S,et al.FSCE:Few-shot object detection via contrastive proposal encoding[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE,2021:7352-7362. [31]XIAO Y,LEPETIT V,MARLET R.Few-shot object detection and viewpoint estimation for objects in the wild[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2020,45(3):3090-3106. [32]YAN X,CHEN Z,XU A,et al.Meta R-CNN:Towards general solver for instance-level low-shot learning[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2019:9577-9586. [33]WU J,LIU S,HUANG D,et al.Multi-scale positive sample refinement for few-shot object detection[M]//Lecture Notes in Computer Science.Cham:Springer,2020:456-472. [34]PANG J,CHEN K,SHI J,et al.Libra R-CNN:Towards ba-lanced learning for object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2019:821-830. |
|