计算机科学 ›› 2025, Vol. 52 ›› Issue (6): 297-305.doi: 10.11896/jsjkx.240300004
张玲1,2, 李振宇1
ZHANG Ling1,2, LI Zhenyu1
摘要: 设备捕捉高分辨率图像的能力对图像处理提出了新的挑战,现有的低光图像增强算法多是针对低分辨率图像设计的,在处理高分辨率图像时,存在细节不清晰、颜色失真等问题。利用图像自身包含的纹理信息和颜色信息,提出了一种边缘和颜色信息引导的高分辨率低光照图像增强算法。为改善卷积神经网络局部特征学习的局限性,引入了边缘解码器,有助于捕获图像中远距离的关键信息,提高对边界语义信息的编码。此外,为处理高分辨率图像,在上下文注意力块中引入了稀疏注意力机制,集中关注图像中的重要信息,以有效减少噪声干扰。另一方面,颜色解码器有效利用了低光图像自身的色度线索,提升了颜色信息恢复的准确性。
中图分类号:
[1]WANG B,LIANG Y D,LIU Z,et al.Study on Unsupervised Image Dehazing and Low-light Image Enhancement Algorithms Based on Luminance Adjustment[J].Computer Science,2023,50(1):123-130. [2]LI L,LIU X L,ZHAO Y,et al.Low Light Image Fusion Detection Method Based on Lego Filter and SSD[J].Computer Science,2021,48(7):213-218. [3]PISANO E D,ZONG S,HEMMINGER B M,et al.Contrast limited adaptive histogram equalization image processing to improve the detection of simulated speculations in dense mammograms[J].Journal of Digital Imaging,1998,11(4):193-200. [4]HOU L X,NIE F Y,WAN L Y.Multiscale adaptive Gamma correction for low-light image enhancement[J].Journal of Yunnan University(Natural Sciences Edition),2023,45(1):57-66. [5]LI M,LIU J,YANG W,et al.Structure-revealing low-lightimage enhancement via robust retinex model[J].IEEE Transactions on Image Processing,2018,27(6):2828-2841. [6]WANG W,WEI C,YANG W,et al.Gladnet:Low-light en-hancement network with global awareness[C]//2018 13th IEEE International Conference on Automatic Face & Gesture Recognition(FG 2018).IEEE,2018:751-755. [7]WANG R,XU X,FU C W,et al.Seeing dynamic scene in the dark:A high-quality video dataset with mechatronic alignment[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2021:9700-9709. [8]LIU R,MA L,ZHANG J,et al.Retinex-inspired unrolling with cooperative prior architecture search for low-light image enhancement[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2021:10561-10570. [9]ZHAO Z,XIONG B,WANG L,et al.RetinexDIP:A unifieddeep framework for low-light image enhancement[J].IEEE Transactions on Circuits and Systems for Video Technology,2021,32(3):1076-1088. [10]LI J,FENG X,HUA Z.Low-light image enhancement via progressive-recursive network[J].IEEE Transactions on Circuits and Systems for Video Technology,2021,31(11):4227-4240. [11]WANG R,XU X,FU C W,et al.Seeing dynamic scene in the dark:A high-quality video dataset with mechatronic alignment[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2021:9700-9709. [12]LORE K G,AKINTAYO A,SARKAR S.LLNet:A deep autoencoder approach to natural low-light image enhancement[J].Pattern Recognition,2017,61:650-662. [13]JIANG Y,GONG X,LIU D,et al.Enlightengan:Deep light enhancement without paired supervision[J].IEEE Transactions on Image Processing,2021,30:2340-2349. [14]GUO C,LI C,GUO J,et al.Zero-reference deep curve estimation for low-light image enhancement[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:1780-1789. [15]ZHU A,ZHANG L,SHEN Y,et al.Zero-shot restoration of underexposed images via robust retinex decomposition[C]//2020 IEEE International Conference on Multimedia and Expo(ICME).IEEE,2020:1-6. [16]COTOGNI M,CUSANO C.TreEnhance:A tree search method for low-light image enhancement[J].Pattern Recognition,2023,136:109249. [17]ZHANG Y,LIU H,DING D.A cross-scale framework for low-light image enhancement using spatial-spectral information[J].Computers and Electrical Engineering,2023,106:108608. [18]WANG T,ZHANG K,SHEN T,et al.Ultra-high-definition low-light image enhancement:A benchmark and transformer-based method[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2023,37(3):2654-2662. [19]TRIANTAFYLLIDOU D,MORAN S,MCDONAGH S,et al.Low light video enhancement using synthetic data produced with an intermediate domain mapping[C]//Computer Vision-ECCV 2020:16th European Conference,Glasgow,UK,Part XIII 16.Springer International Publishing,2020:103-119. [20]LU K,ZHANG L.TBEFN:A two-branch exposure-fusion network for low-light image enhancement[J].IEEE Transactions on Multimedia,2020,23:4093-4105. [21]WU W,WENG J,ZHANG P,et al.Uretinex-net:Retinex-based deep unfolding network for low-light image enhancement[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2022:5901-5910. [22]WU J F,ZHAO X G,ZHOU Q,et al.Contrastive Learning for Low-light Image Enhancement[J].Computer Science,2023,50(S1):525-530. [23]ZHAO M H,WEN Y C,DU S L,et al.Low-light image en-hancement algorithm based on illumination and scene texture attention map[J].Journal of Image and Graphics,2024,29(4):862-874. [24]HE L,YI Z H,XIE Y F,et al.Fast enhancement method for low light images guided by Retinex prior [J].Acta Automatica Sinica,2024,50(5):1-12. [25]JIANG Z T,QIN L L,Qin J Q,et al.Low-light image enhancement method based on MDARNet[J].Journal of Software,2021,32(12):3977-3991. [26]SENTHILKUMARAN N,THIMMIARAJA J.Histogramequalization for image enhancement using MRI brain images[C]//2014 World Congress on Computing and Communication Technologies.IEEE,2014:80-83. [27]YUN S H,KIM J H,KIM S.Image enhancement using a fusion framework of histogram equalization and Laplacian pyramid[J].IEEE Transactions on Consumer Electronics,2010,56(4):2763-2771. [28]SENTHILKUMARAN N,THIMMIARAJA J.Histogramequalization for image enhancement using MRI brain images[C]//2014 World Congress on Computing and Communication Technologies.IEEE,2014:80-83. [29]SURESHA M,RAGHUKUMAR D S,KUPPA S.Kuma-raswamy distribution based bi-histogram equalization for enhancement of microscopic images[J].International Journal of Image and Graphics,2022,22(1):2250003. [30]SINGH P,MUKUNDAN R,DE RYKE R.Feature enhancement in medical ultrasound videos using contrast-limited adaptive histogram equalization[J].Journal of DiIital imaging,2020,33:273-285. [31]LAND E H.The retinex theory of color vision[J].Scientific american,1977,237(6):108-129. [32]DONG X,PANG Y,WEN J.Fast efficient algorithm for enhancement of low lighting video[C]//2011 IEEE International Conference on Multimedia and Expo.2011. [33]WANG S,ZHENG J,HU H M,et al.Naturalness preserved enhancement algorithm for non-uniform illumination images[J].IEEE Transactions on Image Processing,2013,22(9):3538-3548. [34]JAIN V,SEUNG S.Natural image denoising with convolutional networks[C]//Proceedings of the 22nd International Conference on Neural Information Processing Systems.2008:769-776. [35]LV F,LU F,WU J,et al.MBLLEN:Low-Light Image/Video Enhancement Using CNNs[C]//BMVC.2018. [36]REN W,LIU S,MA L,et al.Low-light image enhancement via a deep hybrid network[J].IEEE Transactions on Image Proces-sing,2019,28(9):4364-4375. [37]ZHU M,PAN P,CHEN W,et al.Eemefn:Low-light image enhancement via edge-enhanced multi-exposure fusion network[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2020,34(7):13106-13113. [38]LI J,LI J,FANG F,et al.Luminance-aware pyramid network for low-light image enhancement[J].IEEE Transactions on Multimedia,2020,23:3153-3165. [39]WANG L W,LIU Z S,SIU W C,et al.Lightening network for low-light image enhancement[J].IEEE Transactions on Image Processing,2020,29:7984-7996. [40]LIM S,KIM W.DSLR:Deep stacked Laplacian restorer for low-light image enhancement[J].IEEE Transactions on Multimedia,2020,23:4272-4284. [41]WEI C,WANG W,YANG W,et al.Deep retinex decomposition for low-light enhancement[J].arXiv:1808.04560,2018. [42]WANG Y,WAN R,YANG W,et al.Low-light image enhancement with normalizing flow[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2022,36(3):2604-2612. [43]MA L,MA T,LIU R,et al.Toward fast,flexible,and robustlow-light image enhancement[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2022:5637-5646. [44]WANG Y,YU Y,YANG W,et al.Exposurediffusion:Learning to expose for low-light image enhancement[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2023:12438-12448. [45]YANG S,DING M,WU Y,et al.Implicit neural representation for cooperative low-light image enhancement[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2023:12918-12927. |
|