计算机科学 ›› 2025, Vol. 52 ›› Issue (6A): 240400146-10.doi: 10.11896/jsjkx.240400146
丁绪星, 周学顶, 钱强, 任悦悦, 冯友宏
DING Xuxing, ZHOU Xueding, QIAN Qiang, REN Yueyue, FENG Youhong
摘要: 针对现有的缺陷检测算法计算量大、参数量多、检测速度慢、检测精度低等问题,文中提出了一种基于YOLOv5的高精度光伏玻璃边部缺陷实时检测算法。首先使用新设计的一种基于廉价操作和特征复用的稠密连接模块(New_DBlock(C))替代YOLOv5特征提取网络的C3模块,减少整个算法的计算量和参数量;其次使用融合了通道注意力机制SE(Squeeze-and-Excitation)的C2f_SE模块替换YOLOv5特征融合网络的C3模块,实现检测速度以及检测精度的提升;最后使用改进的YOLOv8解耦检测头取代YOLOv5的耦合检测头,提升算法的定位精度和分类精度。实验结果表明,改进后的算法mAP@0.5提升了1.0%,mAP@0.5:0.95提升了3.1%,计算量下降了48.1%,参数量下降了56.7%,检测速度提升了18.5%;与其他主流的YOLO和R-CNN系列算法相比,改进后的算法同样具有较高的检测精度、检测速度以及较低的计算量和参数量,适合光伏玻璃边部缺陷的实时检测。
中图分类号:
[1]REN S Q,HE K M,GIRSHICK R,et al.Faster R-CNN:towards real-time object detection with region proposal networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(6):1137-1149. [2]HE K,GKIOXARI G,PIOTR D,et al.Mask R-CNN[C]//2017 IEEE International Conference on Computer Vision.Venice,Italy:IEEE,2017:2961-2969. [3]CAI Z W,VASCONCELOS N.Cascade R-CNN:delving intohigh quality object detection[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Salt Lake City,UT,USA:IEEE,2018:6154-6162. [4]LV Y F L,MA L,JIANG H Q.A Mobile Phone Screen Cover Glass Defect Detection MODEL Based on Small Samples Learning[C]//2019 IEEE 4th International Conference on Signal and Image Processing.Wuxi,China:IEEE,2019:1055-1059. [5]CAO Y J,JIA L L,CHEN Y X,et al.Recent advances of generative adversarial networks in computer vision[J].IEEE Access,2018,7:14985-15006. [6]LI L,Z.JIANG Z J,LI Y N.Surface Defect Detection Algorithm of Aluminum Based on Improved Faster RCNN[C]//2021 IEEE 9th International Conference on Information,Communication and Networks.Xi’an,China IEEE Press,2021:527-531. [7]HE K M,ZHANG X Y,REN S Q,et al.Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition.Las Vegas,NV,USA:IEEE Press,2016:770-778. [8]LIU G,WANG F,HUI H.Application of Mask R-CNN in defect detection of industrial filter cloth[C]//2022 Global Conference on Robotics,Artificial Intelligence and Information Technology.Chicago,IL,USA:IEEE,2022:794-798. [9]BAI M L,WANG M W.Fabric defect detection algorithm based on improved Cascade R-CNN[J].Computer Science,2023,50(6A):220300224-6. [10]REZATOFIGHI H,TSOI N,GWAK J A,et al.Generalized intersection over union:a metric and a loss for bounding box regression[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Long Beach,CA,USA:IEEE,2019:658-666. [11]JIANG P,ERGU D,LIU F,et al.A review of yolo algorithm developments[J].Procedia Computer Science,2022,199:1066-1073. [12]TERVEN J,CORDOVA-ESPARZA D M,ROMERO-GONZALEZ J A.A comprehensive review of yolo architectures in computer vision:from yolov1 to yolov8 and yolo-nas[J].Machine Learning and Knowledge Extraction,2023,5(4):1680-1716. [13]KANG C H,KIM S Y.Real-time object detection and segmentation technology:an analysis of the YOLO algorithm[J].JMST Advances,2023,5(2):69-76. [14]HASAN R H,HASSOO R M,ABOUD I S.Yolo versions architecture:review[J].International Journal of Advances in Scientific Research and Engineering,2023,9(11):73-92. [15]LIU W,ANGUELOV D,ERHAN D,et al.SSD:single shotMultiBox detector[C]//European Conference on Computer Vision.Cham:Springer International Publishing,2016:21-37. [16]LIN T Y,GOYAL P,GIRSHICK R,et al.Focal loss for dense object detection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2020,42(2):318-327. [17]HU H T,DU H C,WANG S Q,et al.Improved YOLOX method for detecting surface defects of drug blister aluminum foil[J].Journal of Graphics,2022,43(5):803-814. [18]GE Z,LIU S,WANG F,et al.Yolox:exceeding yolo series in 2021[J].arXiv:2107.08430,2021. [19]HAN D,PAN X,HAN Y,et al.Flatten transformer:visiontransformer using focused linear attention[C]//2023 IEEE/CVF International Conference on Computer Vision.Paris,France:IEEE,2023:5961-5971. [20]LAN H,ZHU Z H,LUO R,et al.PCB defect detection algorithm of improved YOLOv8[C]//2023 8th International Conference on Image,Vision and Computing.Dalian,China:IEEE,2023:178-183. [21]SOHAN M,SAI-RAM T,REDDY R,et al.A review onYOLOv8 and its advancements[C]//International Conference on Data Intelligence and Cognitive Informatics.Springer,Singapore:Springer,2024:529-545. [22]LIU Z,ZHOU B.Research and application on the improved SSD chip defect inspection algorithm[C]//2021 IEEE International Conference on Consumer Electronics and Computer Engineering.Guangzhou,China:IEEE,2021:551-555. [23]ZHOU B,JIANGP F,DUAN C,et al.Study on single background object detection oriented Improved-RetinaNet model and its application [J].Computer Science,2023,50(7):137-142. [24]WANG X,GAO J S,HOU B J,et al.A Lightweight Modified YOLOX Network Using Coordinate Attention Mechanism for PCB Surface Defect Detection[J].IEEE Sensors Journal,2022,22(21):20910-20920. [25]HOU Q,ZHOU D,FENG J.Coordinate attention for efficient mobile network design[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Nashville,TN,USA:IEEE,2021:13713-13722. [26]OLORUNSHOLA O E,IRHEBHUDE M E,EVWIEKPAEFE A E.A comparative study of YOLOv5 and YOLOv7 object detection algorithms[J].Journal of Computing and Social Informatics,2023,2(1):1-12. [27]HU J,SHEN L,SUN G.Squeeze-and-excitation networks[C]//2018 IEEE Conference on Computer Vision and Pattern Recognition.Salt Lake City,USA:IEEE,2018:7132-7141. [28]WU Y,CHEN Y,YUAN L,et al.Rethinking classification and localization for object detection[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Seattle,WA,USA:IEEE,2020:10186-10195. [29]DAI J,LI Y,HE K,et al.R-FCN:object detection via region-based fully convolutional networks[C]//30th Conference on Neural Information Processing Systems.Barcelona,Spain:Curran Associates,Inc,2016,29:379-387. [30]WANG C Y,BOCHKOVSKIY A,LIAO H Y M.YOLOv7:Trainablebag-of-freebies sets new state-of-the-art for real-time object detectors[C]//2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Vancouver.Canada:IEEE,2023:7464-7475. [31]ZENG Q,WEI D,ZHANG X,et al.MFAM-Net:a surface defect detection network for strip steel via multiscale feature fusion and attention mechanism[C]//2023 International Conference on New Trends in Computational Intelligence(NTCI).Qingdao,China:IEEE,2023:117-121. [32]ZHANG Z D,ZHANG B,LAN Z C,et al.FINet:an insulator dataset and detection benchmark based on synthetic fog and improved YOLOv5[J].IEEE Transactions on Instrumentation and Measurement.2022,71:1-8. [33]LI F,XI Q G.DefectNet:toward fast and effective defect detection[J]IEEE Transactions on Instrumentation and Measurement.2021,70:1-9. |
|