计算机科学 ›› 2025, Vol. 52 ›› Issue (6A): 240800048-7.doi: 10.11896/jsjkx.240800048
王荣1, 邹淑平1, 郝鹏飞2, 郭佳伟2, 舒鹏1
WANG Rong1 , ZOU Shuping1, HAO Pengfei2, GUO Jiawei2, SHU Peng1
摘要: 由于沙尘中悬浮粒子对光线的散射和吸收,计算机视觉系统采集到的图像往往存在颜色偏黄和对比度低的问题,目前退化图像增强算法大多针对去雾、去雨等情况,难以处理沙尘图像,针对沙尘图像增强有较大发展空间;由于缺少大规模数据集,神经网络难以实现对沙尘图像增强较好的鲁棒性。为此,提出一种基于多级联注意力交互的沙尘图像增强方法;此外,结合大气散射模型和深度信息构建了一个新的沙尘图像数据集。通过端到端的U-Net模型,提取多尺度特征图,使用多级联通道注意力交互模块融合多尺度特征图,使用多尺度卷积模块增强和恢复细节信息。实验结果表明,所提方法能有效去除图像中的沙尘和还原细节,在提出的数据集上优于先进方法的PSNR,SSIM和IPLPS指数。
中图分类号:
[1]CANTOR A.Optics of the atmosphere:scattering by mole-culesand particles[J].Optica Acta International Journal of Optics,1977,24(7):779-779. [2]HE K,SUN J,TANG X.Single images haze removal using dark channel prior[J].IEEE Transactions on Pattern Analysis and Machine Intellience,2011,33(12):2341-2353. [3]SULAMI M,GLATZER I,FATTAL R,et al.Automatic reco-very of the atmospheric light in hazy images[C]//2014 IEEE International Conference on Computational Photography(ICCP).Santa Clara,CA,USA,2014:1-11. [4]PENG Y T,CAO K,COSMAN P C.Generalization of the Dark Channel Prior for Single Image Restoration[J].IEEE Transactions on Image Processing,2018,27(6):2856-2868. [5]DOSOVITSKIY A,BEYER L,KOLESNIKOV A,et al.AnImage is Worth 16x16 Words:Transformers for Image Recognition at Scale[C]//2021 International Confer-ence on Learning Representations(ICLR). [6]QIN X,WANG Z,BAI Y,et al.FFA-Net:Feature Fusion At-tention Network for Single Image Dehazing [C]// AAAI Conference on Artificial Intelligence.2020:11908-11915. [7]ZHENG Y,ZHAN J,HE S,et al.Curricular Con-trastive Regularization for Physics-Aware Single Image Dehazing[C]//2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).Vancouver,BC,Canada,2023:5785-5794. [8]ZHENG Z.Ultra-High-Definition Image Dehazing via Multi-Guided Bilateral Learning[C]//2021 IEEE/CVF Con-ference on Computer Vision and Pattern Recognition(CVPR).Nashville,TN,USA,2021:16180-16189. [9]DONG Y,LIU Y H,ZHANG H,et al.FD-GAN:Generative Adversarial Networks with Fusion-Discriminator for Single Image Dehazing[C]//AAAI Conference on Artificial Intelligence.34(7). [10]VALANARASU J M J,YASARLA R,PATEL V M.TransWeather:Transformer-based Restoration of Images Degraded by Adverse Weather Conditions[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).New Orleans,LA,USA,2022:2343-2353. [11]SONG Y,HE Z,QIAN H A,et al.Vision Transformers for Single Image Dehazing[J].IEEE Transactions on Image Proces-sing,2023,32:1927-1941. [12]LIU Z.Swin Transformer:Hierarchical Vision Transformerusing Shifted Windows[C]//2021 IEEE/CVF International Conference on Computer Vision(ICCV).Montreal,QC,Canada,2021:9992-10002. [13]PARK T H,EOM I K.Sand-Dust Image Enhancement Using Successive Color Balance With Coincident Chromatic Histogram[J].IEEE Access,2021,9:19749-19760. [14]XU G,WANG X,XU X.Single image enhancement in sandstorm weather via tensor least square[J].IEEE/CAA Journal of Automatica Sinica,2020,7(6):1649-1661. [15]FU X,HUANG Y,ZENG D,et al.A fusion-based enhancing approach for single sandstorm image[C]//2014 IEEE 16th International Workshop on Multi-media Signal Processing(MMSP).Jakarta,Indonesia,2014:1-5. [16]SHI Z,FENG Y,ZHAO M,et al.Let You See in Sand DustWeather:A Method Based on Halo-Reduced Dark Channel Prior Dehazing for Sand-Dust Image Enhance-ment[J].IEEE Access,7:116722-116733. [17]GAO G X,LAI H C,JIA Z H,et al.Sand-dust image restoration based on reversing the blue channel prior[J].IEEE Photonics Journal,2020,12(2):1-16. [18]YU S Y,ZHU H,WANG J,et al.Single sand-dust image restoration using information loss constraint[J].Journal of Modern Optics,2016,63(21):2121-2130. [19]MENG X L,HUANG J Y,LI Z Y,et al.DedustGAN:Unpaired learning for image dedusting based on Retinex with GANs[J].Expert Systems with Applications,2024,243:122844. [20]LAND E H.The retinex theory of color vision[J].Scientific American,1977,237(6):108-128. [21]ZHANG S L,TAO Z Y,LIN S.DedustNet:A Frequency dominated Swin Transformer based Wavelet Network for Agricultural Dust Removal[J].arXiv:2401.04750,2024. [22]SANDLER M,HOWARD A,ZHU M,et al.MobileNetV2:Inverted Residuals and Linear Bottlenecks,[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.2018:4510-4520. [23]HU J,SHEN L,SUN G.Squeeze and Excitation Networks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.2018:7132-7141. [24]CHOLLET F.Xception:Deep Learning with Depthwise Separable Convolutions[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition(CVPR).2017:1800-1807. [25]HE K,ZHANG X,REN S,et al.Deep residual learning forimage recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR).2016:770-778. [26]XIAN K.Monocular Relative Depth Perception with Web Stereo Data Supervision[C]//2018 IEEE/CVF Conference on Compu-ter Vision and Pattern Recognition.2018:311-320. [27]ZHANG Y F,DING L,SHARMA G.HazeRD:An out-doorscene dataset and benchmark for single image dehazing[C]//2017 IEEE International Conference on Image Processing(ICIP).2017:3205-3209. [28]WANG Z,BOVIK A C,SHEIKH H R,et al.Image quality assessment:from error visibility to structural similarity[J].IEEE Transactions on Image Processing,2004,13(4):600-612. [29]ZHANG R,ISOLA P,EFROS A A,et al.The Unreasonable Effectiveness of Deep Features as a Perceptual Metric[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.2018:586-595. [30]MITTAL A.Making a“completely blind”images quality analyzer[J].IEEE Signal Processing Letters,2013,20(3):209-212. [31]FANG Y,MA K,WANG Z,et al.No-Reference Quality Assessment of Contrast-Distorted Images Based on Natural Scene Statistics[J].IEEE Signal Processing Letters,2015,22(7):838-842. [32]LI B,PENG X,WANG Z,et al.AOD-Net:All-in-One Dehazing Network[C]//2017 IEEE International Conference on Compu-ter Vision(ICCV).2017:4780-4788. [33]VENKATANATH N,PRANEETH D,CHANDRASEKHARB,et al.Blind images quality evaluation using perception based features[C]//2015 Twenty First National Conference on Communications(NCC).2015:1-6. [34]WANG X,HAN X,HUANG W,et al.Multi-similarity loss with general pair weighting for deep metric learning[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).USA,2019:5017-5025. |
|