计算机科学 ›› 2025, Vol. 52 ›› Issue (6A): 240800047-6.doi: 10.11896/jsjkx.240800047
胡新, 段江丽, 黄德楠
HU Xin, DUAN Jiangli, HUANG Denan
摘要: 现有的自然语言理解方法是基于信息检索和匹配的,不像人类那样具有认知能力。为了模拟人类对概念的认知能力,知识图谱概念认知的主要任务是从属性有无和属性值两个粒度挖掘概念特征,即概念的频繁属性和属性值,使机器能够区分或认知概念。首先,提出了一种从知识图谱中的概念相关信息中挖掘双粒度概念特征的算法。其次,提出了双粒度属性模式的单调性,以促进两个粒度之间的协同作用并加快挖掘过程。接着,利用极大频繁属性模式的代表性来释放上述单调性的值,加速挖掘过程。最后,实验验证了算法的有效性、双粒度属性模式的单调性、极大频繁模式的代表性和双粒度概念特征的认知能力。
中图分类号:
[1]DUAN J,WANG G,HU X. Equidistant k-layermulti-granularity knowledge space[J]. Knowledge-Based Systems,2021,234:107596. [2]DUAN J,WANG G,HU X,et al. Hierarchical quotient space-based concept cognition for knowledge graphs[J]. Information Sciences,2022,597:300-317. [3]DUAN J,WANG G,HU X,et al. Mining multigranularity decision rules of concept cognition for knowledge graphs based on three-way decision[J]. Information Processing and Management,2023,60(4):103365. [4]DUAN J,WANG G,HU X,et al. Concept cognition for knowledge graphs:Mining multi-granularity decision rule.[J] Cognitive Systems Research,2024,87:101258. [5]JI S,PAN S,CAMBRIA E,et al. A survey on knowledgegraphs:Representation,acquisition,and applications[J]. IEEE Transactions on Neural Networks Learning Systems,2022,33(2):494-514. [6]BELLOMARINI L,BENEDETTI M,GENTILI A,et al. KG-Roar:Interactive datalog-based reasoning on virtual knowledge graphs[J]. Proceedings of VLDB Endowment,2023,16(12):4014-4017. [7]BUDHATHOKI M,ALSADOON A,DAWOUD A,et al. Knowledge graph for recommendation system:enhanced relation reliability and prediction probability(ERRaPP)[J]. Multimedia Tools and Applications,2024,83(2):3525-3546. [8]HU X,DUAN J,DANG D. Natural language question answering over knowledge graph:The marriage of SPARQL query and keyword search[J]. Knowledge and Information Systems,2021,63(4):819-844. [9]HUO C,MA S,LIU X. Hotness prediction of scientific topics based on a bibliographic knowledge graph[J]. Information Processing and Management,2022,59(4):102980. [10]FAN T,WANG H. Research of Chinese intangible cultural heritage knowledge graph construction and attribute value extraction with graph attention network[J]. Information Processing and Management,2022,59(1):102753. [11]OPDAHL A L,AL-MOSLMI T,DANG-NGUYEN D,et al. Semantic knowledge graphs for the news:A review[J]. ACM Computing Surveys,2023,55(7):140. [12]FILIPIAK D,FENSEL A,FILIPOWSKA A. KGTN-ens:few-shot image classification with knowledge graph ensembles[J]. Applied Intelligence,2024,54(2):1893-1908. [13]LIN K,GAO J,LI Y,et al. Multi-granularity collaborative decision with cognitive networking in intelligent transportation systems[J]. IEEE Transactions on Intelligent Transportation Systems,2023,24(1):1088-1098. [14]ZHOU R,CHANG H,ZHOU Y,et al. Constructing cognitive reasoning and decision making under attribute granular computing using fuzzy petri nets[J]. IEEE Transactions on Cognitive and Developmental Systems,2023,15(3):1170-1182. [15]ZHAO W,ZHAO H. Hierarchical long-tailed classificationbased on multi-granularity knowledge transfer driven by multi-scale feature fusion[J]. Pattern Recognition,2024,145:109842. [16]CONCEPCIÓN L,NÁPOLES G,GRAU I,et al. Fuzzy-roughcognitive networks:Theoretical analysis and simpler models[J]. IEEE Transactions on Cybernetics,2022,52(5):2994-3005. [17]MA S,CHENG G,LI Y,et al. Research on multi-granularityimbalanced knowledge condition monitoring for mechanical equipment based on hierarchical ELM in multi-entropy space[J]. Expert Systems with Applications,2024,238:121817. [18]SUN Z,LEI Y,ZHANG L,et al. A multi-channel next poi recommendation framework with multi-granularity check-in signals[J]. ACM Transactions on Information Systems,2024,42(1):1-28. [19]ZHANG Y,YANG B,MAO R,et al. MGT:Multi-granularitytransformer leveragingmulti-level relation for sequential recommendation[J]. Expert Systems with Applications,2024,238:121808. [20]HE J,TANG C,LI W,et al. BR-HIDF:An anti-sparsity and effective host intrusion detection framework based on multi-granularity feature extraction[J]. IEEE Transactions on Information Forensics and Security,2024,19:485-499. [21]LI J,HUANG C,QI J,et al. Three-way cognitive concept learning via multi-granularity[J]. Information Sciences,2017,378:244-263. [22]XU W,GUO D,QIAN Y,et al. Two-Way Concept-Cognitive Learning Method:A Fuzzy-Based Progressive Learning[J]. IEEE Transactions on Fuzzy Systems,2023,31(6):1885-1899. [23]BELLOMARINI L,BENEDETTO D,GOTTLOB G,et al. Vadalog:A modern architecture for automated reasoning with large knowledge graphs[J]. Information Systems,2022,105:1-15. [24]ZHAO W,XU C,GUAN Z,et al. Multiview concept learning via deep matrix factorization[J]. IEEE Transactions on Neural Networks Learning Systems,2021,32(2):814-825. [25]ZHANG T,LI H,LIU M,et al. Incrementalconcept-cognitive learning based on attribute topology [J]. International Journal of Approximate Reasoning,2020,118:173-189. [26]YAN E,YU C,LU L,et al. Incremental concept cognitivelearning based on three-way partial order structure[J]. Know-ledge-Based Systems,2021,220:1-11. [27]MI Y,SHI Y,LI J,et al. Fuzzy-based concept learning method:Exploiting data with fuzzy conceptual clustering[J]. IEEE Transactions on Cybernetics,2022,52(1):582-593. [28]MI Y,LIU W,SHI Y,et al. Semi-supervised concept learning by concept-cognitive learning and concept space[J]. IEEE Transactions on Knowledge and Data Engineering,2022,34(5):2429-2442. [29]XU J,SUN L,ZHANG Q. Theory and method of granular computing and its uncertainty information measurement[M]. Beijing:Science Press,2013. [30]HU X,WANG G,DUAN J. Mining maximal dynamic spatialcolocation patterns[J]. IEEE Transactions on Neural Networks Learning Systems,2021,32(3):1026-1036. [31]WANG L,FANG Y,ZHOU L. Preference-based spatial co-location pattern mining[M]. Berlin:Springer,2022. |
|