计算机科学 ›› 2025, Vol. 52 ›› Issue (6A): 240800156-7.doi: 10.11896/jsjkx.240800156

• 图像处理&多媒体技术 • 上一篇    下一篇

基于空间转换与多尺度特征融合的行人重识别方法

金鹭, 刘敏昆, 张春红, 陈可飞, 罗压琼, 李博   

  1. 昆明文理学院信息工程学院 昆明 650031
  • 出版日期:2025-06-16 发布日期:2025-06-12
  • 通讯作者: 刘敏昆(102358642@qq.com)
  • 作者简介:(742939058@qq.com)

Pedestrian Re-identification Based on Spatial Transformation and Multi-scale Feature Fusion

JIN Lu, LIU Mingkun, ZHANG Chunhong, CHEN Kefei, LUO Yaqiong, LI Bo   

  1. School of Information Engineering,College of Arts and Sciences Kunming,Kunming 650031,China
  • Online:2025-06-16 Published:2025-06-12
  • About author:JIN Lu,born in 1992,master,assistant lecturer.His main research interest is computer vision.
    LIU Minkun,bornin 1959,postgra-duate,professor.His main research in-terest is computer technology.

摘要: 针对行人空间特征未对齐以及因遮挡导致网络无法充分表征行人信息的问题,设计了一种结合空间转换与多尺度特征融合的网络。首先,提出了一种增强行人检索的方法,旨在增强网络对特殊样本的识别能力;其次,提出了一种自约束-注意力空间转换网络,以解决行人图像空间语义信息不一致的问题;然后,从网络中提取不同尺度特征,并根据网络各分支特点分别融入坐标注意力、实例批量归一化;最后,将各支路特征进行融合,以获取高表征能力的融合特征。在多个数据集上的实验表明,所提方法相比现有方法的重识别性能更优。

关键词: 行人重识别, 空间转换, 特征融合, 多尺度, 侧窗滤波

Abstract: A network combining spatial transformation and multiscale feature fusion is designed to address the issue of insufficiently representing pedestrian information due to misalignment of pedestrian spatial characteristics and occlusion factors.Firstly,a method for enhancing pedestrian retrieval is proposed,aiming to improve the network’s ability to recognize special samples.Secondly,a self-attention spatial transformation network is introduced to address the problem of inconsistent spatial semantic information in pedestrian image regions.Then,different scale features are extracted from the network,and fused separately based on the characteristics of each branch,incorporating coordinate attention and instance batch normalization.Finally,the features of different branches are fused to obtain highly representative fused features.Experiments on multiple datasets show that the proposed method outperforms existing methods in terms of re-identification performance.

Key words: Pedestrian re-identification, Spatial transformation, Feature fusion, Multiple scale, Side window filtering

中图分类号: 

  • TP391.41
[1]LUO H,JIANG W,FAN X,et al.Research progress of pedestrian re-identification based on deep learning [J].Acta Automatica Sinica,2019,45(11):2032-2049.
[2]LIAO S,HU Y,ZHU X,et al.Person re-identification by local maximal occurrence representation and metric learning[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2015:2197-2206.
[3]TAO D,JIN L,WANG Y,et al.Person reidentification by minimum classification error-based KISS metric learning[J].IEEE Transactions on Cybernetics,2014,45(2):242-252.
[4]SU C,LI J,ZHAN G S,et al.Pose-driven deep convolutionalmodel for person re-identification[C]//Proceedings of the IEEE International Conference on Computer Vision.2017:3960-3969.
[5]LUO H,JIANG W,FAN X,et al.Stnreid:Deep convolutional networks with pairwise spatial transformer networks for partial person re-identification[J].IEEE Transactions on Multimedia,2020,22(11):2905-2913.
[6]ZHENG L,YANG Y,HAUPTMANNA G.Person re-identification:Past,present and future[J].arXiv:1610.02984,2016.
[7]YAN C,PANG G,BAI X,et al.Beyond triplet loss:person re-identification with fine-grained difference-aware pairwise loss[J].IEEE Transactions on Multimedia,2021,24:1665-1677.
[8]PAN X,LUO P,SHI J,et al.Two at once:Enhancing learning and generalization capacities via ibn-net[C]//Proceedings of the European Conference on Computer Vision(ECCV).2018:464-479.
[9]HU J,SHEN L,SUNG.Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:7132-7141.
[10]DAI J,QI H,XIONG Y,et al.Deformable convolutional net-works[C]//Proceedings of the IEEE International Conference on Computer Vision.2017:764-773.
[11]PENG P,TIAN Y,HUANG Y,et al.Discriminative spatial feature learning for person re-identification[C]//Proceedings of the 28th ACM International Conference on Multimedia.2020:274-283.
[12]HOU Q,ZHOU D,FENG J.Coordinate attention for efficient mobile network design[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2021:13713-13722.
[13]CHEN W,CHEN X,ZHANG J,et al.Beyond triplet loss:a deep quadruplet network for person re-identification[C]//Procee-dings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:403-412.
[14]SZEGEDY C,VANHOUCKE V,IOFFES,et al.Rethinking the inception architecture for computer vision[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:2818-2826.
[15]ZHENG L,SHEN L,TIAN L,et al.Scalable person re-identification:A benchmark[C]//Proceedings of the IEEE Internatio-nal Conference on Computer Vision.2015:1116-1124.
[16]ZHENG Z,ZHENG L,YANG Y.Unlabeled samples generatedby gan improve the person re-identification baseline in vitro[C]//Proceedings of the IEEE International Conference on Computer Vision.2017:3754-3762.
[17]SUN Y,ZHENG L,YANG Y,et al.Beyond part models:Person retrieval with refined part pooling(and a strong convolutional baseline)[C]//Proceedings of the European Conference on Computer Vision(ECCV).2018:480-496.
[18]LUO H,JIANG W,FAN X,et al.Stnreid:Deep convolutional networks with pairwise spatial transformer networks for partial person re-identification[J].IEEE Transactions on Multimedia,2020,22(11):2905-2913.
[19]SUN Y,XU Q,LI Y,et al.Perceive where to focus:Learning visibility-aware part-level features for partial person re-identification[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2019:393-402.
[20]SUN Y,CHENG C,ZHANG Y,et al.Circle loss:A unified perspective of pair similarity optimization[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:6398-6407.
[21]ZHOU K,YANG Y,CAVALLARO A,et al.Omni-scale feature learning for person re-identification[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2019:3702-3712.
[22]WANG G,YANG S,LIU H,et al.High-order information matters:Learning relation and topology for occluded person re-identification[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:6449-6458.
[23]LUO H,GU Y,LIAO X,et al.Bag of tricks and a strong baseline for deep person re-identification[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops.2019.
[24]CHEN Y,WANG H,SUN X,et al.Deep attention aware feature learning for person re-identification[J].Pattern Recognition,2022,126:108567.
[25]KALAYEH M M,BASARAN E,GÖKMEN M,et al.Human semantic parsing for person re-identification[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:1062-1071.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!