计算机科学 ›› 2025, Vol. 52 ›› Issue (6A): 240800142-9.doi: 10.11896/jsjkx.240800142
李鹏彦, 王宝会, 叶子豪
LI Pengyan, WANG Baohui, YE Zihao
摘要: 随着互联网信息量的激增,推荐系统在解决信息过载问题中扮演着关键角色。针对现有推荐系统模型在实体和关系表示中的不足,提出了一种基于表示增强的RippleNet模型(Representation Enhanced RippleNet,RE-RippleNet)。一方面,传统模型在实体表示中忽略了关系的语义信息,通过将邻居实体和关系聚合到实体的嵌入表示中,提升实体嵌入的表达能力和用户表征的精确度。另一方面,在用户偏好传播的多跳波纹集聚合时,引入长短期记忆网络(Long Short-Term Memory,LSTM)来捕捉不同跳数中用户偏好表示的不同影响力和特征,以实现更深层次的用户偏好挖掘和更精准的推荐。在MovieLens-1M和Book-Crossing两个公共数据集上的点击率预测实验结果表明,相比基线模型RippleNet,RE-RippleNet在准确率(ACC)和AUC指标上均取得显著提升。其中,在MovieLens-1M数据集上的ACC和AUC分别提高了1.7%和1.2%,在Book-Crossing数据集上分别提高了3.6%和1.6%,结果验证了模型在提升推荐系统性能方面的有效性。
中图分类号:
[1]ADOMAVICIUS G,TUZHILIN A.Toward the next generation of recommender systems:a survey of the state-of-the-art and possible extensions[J].IEEE Transactions on Knowledge and Data Engineering,2005,17(6):734-749. [2]SUN Z,GUO Q,YANG J,et al.Research commentary on re-commendations with side information:A survey and research directions[J].Electronic Commerce Research and Applications,2019,37:100879. [3]FAN W,MA Y,LI Q,et al.Graph Neural Networks for Social Recommendation[C]//The World Wide Web Conference.2019:417-426. [4]GUO Z,WANG H.A Deep Graph NeuralNetwork-BasedMechanism for Social Recommendations[J].IEEE Transactions on Industrial Informatics,2020,17(4):2776-2783. [5]WU L,YANG Y,ZHANG K,et al.Joint item recommendation and attribute inference:An adaptive graph convolutional network approach[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval.2020:679-688. [6]DONG B,ZHU Y,LI L,et al.Hybrid collaborative recommendation of co-embedded item attributes and graph features[J].Neurocomputing,2021,442:307-316. [7]WANG H,ZHANG F,WANG J,et al.Ripplenet:Propagatinguser preferences on the knowledge graph for recommender systems[C]//Proceedings of the 27th ACM International Confe-rence on Information and Knowledge Management.2018:417-426. [8]TANG X,WANG T,YANG H,et al.AKUPM:Attention-enhanced knowledge-aware user preference model for recommendation[C]//Proceedings of the 25th ACM SIGKDD InternationalConference on Knowledge Discovery & Data Mining.2019:1891-1899. [9]QU Y,BAI T,ZHANG W,et al.An end-to-end neighborhood-based interaction model for knowledge-enhanced recommendation[C]//Proceedings of the 1st International Workshop on Deep Learning Practice for High-dimensional Sparse Data.2019:1-9. [10]WANG Z,LIN G,TAN H,et al.CKAN:Collaborative know-ledge-aware attentive network for recommender systems[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval.2020:219-228. [11]LYU Z,WU Y,LAI J,et al.Knowledge enhanced graph neural networks for explainable recommendation[J].IEEE Transactions on Knowledge and Data Engineering,2022,35(5):4954-4968. [12]HOCHREITER S,SCHMIDHUBERJ.Long short-term memory[J].Neural Computation,1997,9(8):1735-1780. [13]ADOMAVICIUS G,TUZHILIN A.Toward the next generation of recommender systems:A survey of the state-of-the-art and possible extensions[J].IEEE Transactions on Knowledge and Data Engineering,2005,17(6):734-749. [14]SU X,KHOSHGOFTAAR T M.A survey of collaborative filtering techniques[J].Advances in Artificial Intelligence,2009,2009(1):421425. [15]SUN Z,GUO Q,YANG J,et al.Research commentary on recommendations with side information:A survey and research directions[J].Electronic Commerce Research and Applications,2019,37:100879. [16]GUO Z,WANG H.A deep graph neural network-based mechanism for social recommendations[J].IEEE Transactions on Industrial Informatics,2020,17(4):2776-2783. [17]BORDES A,USUNIER N,GARCIA-DURAN A,et al.Translating embeddings for modeling multi-relational data[J].Advances in Neural Information Processing Systems,2013,26. [18]WANG Z,ZHANG J,FENG J,et al.Knowledge graph embedding by translating on hyperplanes[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2014. [19]LIN Y,LIU Z,SUN M,et al.Learning entity and relation embeddings for knowledge graph completion[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2015. [20]JI G,HE S,XU L,et al.Knowledge graph embedding via dy-namic mapping matrix[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing(volume 1:Long papers).2015:687-696. [21]JI G,LIU K,HE S,et al.Knowledge graph completion with adaptive sparse transfer matrix[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2016. [22]WANG H,ZHANG F,XIE X,et al.DKN:Deep knowledge-aware network for news recommendation[C]//Proceedings of the 2018 World Wide Web Conference.2018:1835-1844. [23]KIM Y.Convolutional neural networks for sentence classification[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing.2014:1746-1751. [24]HUANG J,ZHAO W X,DOU H,et al.Improving sequential recommendation with knowledge-enhanced memory networks[C]//The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval.2018:505-514. [25]SUN Y,HAN J,YAN X,et al.Pathsim:Meta path-based top-k similarity search in heterogeneous information networks[J].Proceedings of the VLDB Endowment,2011,4(11):992-1003. [26]YU X,REN X,GU Q,et al.Collaborative filtering with entity similarity regularization in heterogeneous information networks[J].IJCAI HINA,2013,27:1-6. [27]LUO C,PANG W,WANG Z,et al.Hete-cf:Social-based colla-borative filtering recommendation using heterogeneous relations[C]//2014 IEEE International Conference on Data Mining.IEEE,2014:917-922. [28]ZHAO H,YAO Q,LI J,et al.Meta-graph based recommendation fusion over heterogeneous information networks[C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.2017:635-644. [29]WANG H,ZHAO M,XIE X,et al.Knowledge graph convolu-tional networks for recommender systems[C]//The World Wide Web Conference.2019:3307-3313. [30]KIPF T N,WELLING M.Semi-supervised classification withgraph convolutional networks[J].arXiv:1609.02907,2016. [31]VELICKOVIC P,CUCURULL G,CASANOVA A,et al.Graph attention networks[J].Stat,2017,1050(20):10-48550. [32]ZHANG F,YUAN N J,LIAN D,et al.Collaborative knowledge base embedding for recommender systems[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.2016:353-362. [33]WANG H,ZHANG F,HOU M,et al.Shine:Signed heteroge-neous information network embedding for sentiment link prediction[C]//Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining.2018:592-600. [34]YU X,REN X,SUN Y,et al.Personalized entity recommendation:A heterogeneous information network approach[C]//Proceedings of the 7th ACM International Conference on Web Search and Data Mining.2014:283-292. [35]RENDLE S.Factorization machines with libfm[J].ACM Transactions on Intelligent Systems and Technology(TIST),2012,3(3):1-22. [36]CHENG H T,KOC L,HARMSEN J,et al.Wide & deep lear-ning for recommender systems[C]//Proceedings of the 1st Workshop on Deep Learning for Recommender Systems.2016:7-10. [37]LI C,CAO Y,ZHU Y,et al.Ripple knowledge graph convolutional networks for recommendation systems[J].Machine Intelligence Research,2024,21(3):481-494. [38]WANTING L,YUQING Z.Recommendation Model Combining RippleNet and KGCN[C]//2024 9th International Conference on Signal and Image Processing(ICSIP).IEEE,2024:312-318. |
|