计算机科学 ›› 2025, Vol. 52 ›› Issue (6A): 240500021-8.doi: 10.11896/jsjkx.240500021
刘远红, 毋毓斌
LIU Yuanhong, WU Yubin
摘要: 局部线性嵌入算法采用欧氏距离选择邻域点,这通常会损失数据集本身的非线性特征,造成邻域点选取错误,且仅使用欧氏距离构造权重会导致信息挖掘不充分。针对以上问题,提出基于概率模型与信息熵的局部线性嵌入算法(Probability information entropy-LLE,PIE-LLE)。首先,为了使邻域点选择更加合理,从数据集的概率分布角度出发,考虑样本点及其邻域的概率分布,为样本点构造符合局部分布的邻域集合。其次,为了充分提取样本的局部结构信息,在权重构造阶段,分别计算样本所属邻域概率以及每个样本的信息熵,融合二者信息重构低维样本。最后,在两个轴承故障数据集上的实验表明,所提方法故障识别准确度最高达到了100%,高于其他对比算法;在邻域点个数5~15范围内,PIE-LLE算法展现出良好的低维可视化效果;在参数敏感性实验中,该算法可以保持Fisher指标较大,有效提高了算法的分类准确度和稳定性。
中图分类号:
[1]SU Z,TANG B,MA J,et al.Fault diagnosis method based on incremental enhanced supervised locally linear embedding and adaptive nearest neighbor classifier[J].Measurement,2014,48:136-148. [2]MA X,ZHANG F,LI Y,et al.Robust sparse representationbased face recognition in an adaptive weighted spatial pyramid structure[J].Science China Information Sciences,2018,61:1-13. [3]HE X,CAI D,YAN S,et al.Neighborhood preserving embedding[C]//Tenth IEEE International Conference on Computer Vision(ICCV’05) Volume 1.IEEE,2005:1208-1213. [4]HE X,YAN S,HU Y,et al.Face recognition using laplacianfaces[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(3):328-340. [5]CAI D,HE X,HAN J,et al.Graph regularized nonnegative matrix factorization for data representation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2010,33(8):1548-1560. [6]NIE F,WANG Z,WANG R,et al.Adaptive local embedding learning for semi-supervised dimensionality reduction[J].IEEE Transactions on Knowledge and Data Engineering,2021,34(10):4609-4621. [7]WANG D,HOI S C H,HE Y,et al.Retrieval-based face annotation by weak label regularized local coordinate coding[C]//Proceedings of the 19th ACM International Conference on Multimedia.2011:353-362. [8]FANG X,HAN N,WU J,et al.Approximate low-rank projection learning for feature extraction[J].IEEE Transactions on Neural Networks and Learning Systems,2018,29(11):5228-5241. [9]TAN C,CHEN S,JI G,et al.A novel probabilistic label en-hancement algorithm for multi-label distribution learning[J].IEEE Transactions on Knowledge and Data Engineering,2021,34(11):5098-5113. [10]HSIEH J W,CHUANG C H,CHEN S Y,et al.Segmentation of human body parts using deformable triangulation[J].IEEE Transactions on Systems,Man,and Cybernetics-Part A:Systems and Humans,2010,40(3):596-610. [11]SAUL L K,ROWEIS S T.An introduction to locally linear embedding[EB/OL].http://www.cs.toronto.edu/~ roweis/lle/publications.html. [12]WANG X,ZHENG Y,ZHAO Z,et al.Bearing fault diagnosisbased on statistical locally linear embedding[J].Sensors,2015,15(7):16225-16247. [13]SOIZE C,GHANEM R.Data-driven probability concentrationand sampling on manifold[J].Journal of Computational Physics,2016,321:242-258. [14]LIU Y,SHI B,LU S,et al.A novel local linear embedding algorithm via local mutual representation for bearing fault diagnosis[J].Reliability Engineering & System Safety,2024,247:110135. [15]CAI B,HUANG L,XIE M.Bayesian Networks in Fault Diagnosis[J].IEEE Transactions on Industrial Informatics,2017,13(5):2227-2240. [16]SOIZE C,GHANEM R.Probabilistic learning on manifolds[J].arXiv:2002.12653,2020. [17]VERMA V,FERNANDEZ J,SIMMONSR,et al.Probabilisticmodels for monitoring and fault diagnosis[C]//The Second IARP and IEEE/RAS Joint Workshop on Technical Challenges for Dependable Robots in Human Environments.Ed.Raja Chatila.2002. [18]CANDUCCI M,TINO P,MASTROPIETROM.Probabilisticmodelling of general noisy multi-manifold data sets[J].Artificial Intelligence,2022,302:103579. [19]WANG Z,YAO L,CHEN G,et al.Modified multiscale weighted permutation entropy and optimized support vector machine method for rolling bearing fault diagnosis with complex signals[J].ISA Transactions,2021,114:470-484. [20]SAAD F,CUSUMANO-TOWNER M,MANSINGHKA V.Estimators of entropy and information via inference in probabilistic models[C]//International Conference on Artificial Intelligence and Statistics.PMLR,2022:5604-5621. [21]KUMAR A,PARKASH C,VASHISHTHAG,et al.State-space modeling and novel entropy-based health indicator for dynamic degradation monitoring of rolling element bearing[J].Reliability Engineering & System Safety,2022,221:108356. [22]TANG F,FENG H,TINO P,et al.Probabilistic learning vector quantization on manifold of symmetric positive definite matrices[J].Neural Networks,2021,142:105-118. [23]ZHAO L,ZHANG Z.Supervised locally linear embedding with probability-based distance for classification[J].Computers & Mathematics with Applications,2009,57(6):919-926. [24]LIU Y H,ZHAO W B,ZHANG Y S,et al.Local linear embedding algorithms based on probability distributions[C]//2022 IEEE International Conference on Advances in Electrical Engineering and Computer Applications(AEECA).IEEE,2022:1336-1339. |
|