计算机科学 ›› 2025, Vol. 52 ›› Issue (8): 214-221.doi: 10.11896/jsjkx.241000019
沈涛1, 张秀再1,2, 许岱1
SHEN Tao1, ZHANG Xiuzai1,2, XU Dai1
摘要: 针对遥感图像目标检测算法漏检率和误检率高,且对小目标检测效果差的问题,提出一种改进RT-DETR(Real-Time Detection Transformer)的目标检测算法。为提升模型对遥感图像中不同尺寸目标的检测能力,采用可变核卷积与多样化分支结构,丰富多尺度表征能力;为避免下采样造成小目标信息丢失的问题,采用Haar小波下采样保留尽可能多的特征信息;针对小目标特征信息在复杂的网络迭代与池化中丢失的问题,设计SPABC3模块,通过对称激活函数和残差连接增强检测目标信息和抑制冗余信息。实验结果表明,改进RT-DETR算法在VisDrone2019数据集和RSOD数据集上,mAP@0.5分别达到42.7%和95.3%,优于其他对比主流算法,提升了对遥感图像中小目标的检测精度,满足遥感图像小目标的检测需求。
中图分类号:
[1]ZOU Z,CHEN K,SHI Z,et al.Object detection in 20 years:A survey[C]//Proceedings of the IEEE.2023:257-276. [2]REDMON J,DIVVALA S,GIRSHICK R,et al.You only look once:unified,real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:779-788. [3]LIU W,ANGUELOV D,ERHAN D,et al.SSD:Singleshotmultibox detector[C]//Proceedings of European Conference on Computer Vision.Cham:Springer,2016:21-37. [4]CARION N,MASSA F,SYNNAEVE G,et al.End-to-End Object Detection with Transformers[C]//European Conference on Computer Vision.Cham:Springer,2020:213-229. [5]GIRSHICK R,DONAHUE J,DARRELL T,et al.Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation[C]//Proceedings of the IEEE Conference on ComputerVision and Pattern Recognition.2014:580-587. [6]GIRSHICK R.Fast R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision.2015:1440-1448. [7]REN S,HE K,GIRSHICK R,et al.Faster R-CNN:Towards Real-Time Object Detection with Region Proposal Networks[J].IEEE Transactions on Pattern Analysis & Machine Intelligence,2017,39(6):1137-1149. [8]ZHOU H P,ZHANG J.Context information fusion and attention of remote sensing of small target detection [J].Journal of Jilin Normal University(Natural Science Edition),2024(1):117-125. [9]WANG J Z,LIU Z D,WANG X N,et al.Aerial image detection method based on improved YOLOv5 [J].Communication and Information Technology,2024(1):29-33. [10]ZUO L,NIU X W,ZHU C H.The aerial remote sensing image detection model based on improved YOLOX [J].Journal of Electronic Measurement Technology,2023,46(16):179-186. [11]XIAO J S,YAO Y T,ZHOU J,et al.FDLR-Net:A feature decoupling and localization refinement network for object detection in remote sensing images[J].Expert Systems with Applications,2023,225:120068. [12]ZHANG J,DING A,LI G,et al.A pyramid attention network with edge information injection for remote sensing object detection[J].IEEE Geoscience and Remote Sensing Letters,2023,20:1-5. [13]LU W,XU S.,ZHAO Y,et al.DETRs Beat YOLOs on Real-time Object Detection[J].arXiv:2304.08069,2023. [14]GAO Y,LI K,MOSALAM K M,et al.Deep Residual Net with Transfer Learning for Image-based Structural Damage Recognition Deep Residual Network with Transfer Learning[C]//11th National Conference on Earthquake Engineering.2018. [15]NEUBECK A,VAN G L.Efficient non-maximum suppression[C]//18th International Conference on Pattern Recognition.IEEE,2006:850-855. [16]ZHANG X,SONG Y,SONG T,et al.AKConv:Convolutional Kernel with Arbitrary Sampled Shapes and Arbitrary Number of Parameters[J].arXiv:2311.11587,2023. [17]DING X H,ZHANG X Y,HAN J G,et al.Diverse BranchBlock:BuildingaConvolutionas an Inception-LikeUnit[C]//Proceedings of theI EEEConference on Computer Visionand Pattern Recognition.2021:10886-10895. [18]XU G P,LIAO W T,ZHANG X,et al.Haar wavelet downsampling:A simple but effective downsampling module for semantic segmentation[J].Pattern Recognition,2023,143:109819. [19]WAN C,YU H Y,LI Z Q,et al.Swift Parameter-free Attention Network for Efficient Super-Resolution[J].arXiv:2311.12770,2023. [20]VARGHESE R,SAMBATH M.YOLOv8:A Novel Object Detection Algorithm with Enhanced Performance and Robustness[C]//2024 International Conference on Advances in Data Engineering and Intelligent Computing Systems(ADICS).2024:1-6. [21]WANG A,CHEN H,LIU L,et al.YOLOv10:Real-Time End-to-End Object Detection[C]//Advances in Neural Information Processing Systems.2024:107984-108011. [22]ZHU X,SU W,LU L,et al.Deformable DETR:DeformableTransformers for End-to-End Object Detection[J].arXiv:2010.04159,2020. [23]ZHANG H,LI F,LIU S,et al.DINO:DETR with Improved DeNoising Anchor Boxes for End-to-End Object Detection[J].ar-Xiv:2203.03605,2022. |
|