计算机科学 ›› 2025, Vol. 52 ›› Issue (11): 166-174.doi: 10.11896/jsjkx.241000115
赵炼1, 吴扬东1, 邓智方1, 李丰硕1, 袁庆霓1, 张太华2
ZHAO Lian1, WU Yangdong1, DENG Zhifang1, LI Fengshuo1, YUAN Qingni1, ZHANG Taihua2
摘要: 表面肌电信号(Surface Electromyography,sEMG)常用于预测人体意图行为,是一种不平稳、非周期、含有噪声的生物电信号,容易受工频干扰、环境干扰等影响,导致对其进行预测存在一定难度。对此,提出了一种基于变分模态分解(Variatio-nal Mode Decomposition,VMD)和改进粒子群优化( Particle Swarm Optimization,PSO)算法的复合神经网络模型(Composite Neural Network Model,CNNM)。该模型结合了长短期记忆网络(Long-Short Term Memory,LSTM)、卷积神经网络(Convolutional Neural Networks,CNN)和双向长短期记忆网络(Bidirectional Long Short Term Memory,BiLSTM)。首先对PSO算法进行改进以优化VMD的参数,通过VMD处理sEMG信号,提出希尔伯特能量法,对分解后的分量进行加权重构,降低信号复杂性并保留关键特征。然后利用LSTM方法从sEMG信号中提取时间特征,利用CNN方法进一步提取空间特征,并通过注意力机制强化对关键信息的提取,最后输入BiLSTM中进行预测识别。实验结果表明,该模型的预测准确率可达99.9%,相较于其他模型提高了3%~8%,并通过消融实验验证了各模块的作用。该研究旨在提高手势动作的预测识别精度,为康复训练机器人的控制提供有效的解决方案。
中图分类号:
| [1]BATTISTON B,TITOLO P,CICLAMINI D,et al.Peripheral Nerve Defects:Overviews of Practice in Europe [J].Hand Cli-nics,2017,33(3):545-50. [2]ZHOU S,ZHANG G J.Research progress on the application of robots in early rehabilitation training of patients with movement disorders after stroke [J].Chinese Nursing Research,2024,38(8):1428-1432. [3]BERTANI R,MELEGARI C,DE COLA M C,et al.Effects of robot-assisted upper limb rehabilitation in stroke patients:a systematic review with meta-analysis [J].Neurological Sciences,2017,38(9):1561-1569. [4] MARIANNE B,LAURENT B,JEANSÉBASTIEN R,et al.Reducing Noise,Artifacts and Interference in Single-Channel EMG Signals:A Review [J].Sensors,2023,23(6):2927. [5]ZHENG Y,ZHENG G,ZHANG H,et al.Mapping Method ofHuman Arm Motion Based on Surface Electromyography Signals [J].Sensors,2024,24(9):2827. [6]HUO Y D,LI F B,LI Q,et al.A Novel Method for Hand Movement Recognition Based on Wavelet Packet Transform and Principal Component Analysis with Surface Electromyogram [J].Computational Intelligence and Neuroscience,2022,2022(1):8125186. [7]ZHANG Q,LUO W Y,HUANG B,et al.Continuous kinematics prediction of lower limb driven by EMG [J].Journal of Huazhong University of Science and Technology(Nature Science Edition),2017,45(10):128-132. [8]TRIWIYANTO T,VUGAR A,ALI A A.Deep ConvolutionNeural Network to Improve Hand Motion Classification Performance Against Varying Orientation Using Electromyography Signal [J].International Journal of Precision Engineering and Manufacturing,2024,25(6):1289-1301. [9]WEI W T,LI Y J.Surface electromyography based gesture re-cognition based on dual-stream CNN [J].Computer Integrated Manufacturing Systems,2022,28(1):124-131. [10]ARJAN G,MANFREDO A,CLAUDIO C,et al.Movement error rate for evaluation of machine learning methods for sEMG-based hand movement classification [J].IEEE Transactions on Neural Systems and Rehabilitation Engineering,2014,22(4):735-744. [11]JIANG H Y,XU X J,ZHONG L J,et al.Gesture Recognition of Surface Electromyography Based on Variational Mode Decomposition and Domain Adaptation [J].Journal of Xi'an Jiaotong University,2024,58(5):75-87. [12]DRAGOMIRETSKIY K,ZOSSO D.Variational Mode Decomposition [J].IEEE Transactions on Signal Processing,2014,62(3):531-544. [13]WANG W M.Prediction of Lower Limb Joint Angle Based on VMD-ELMAN Electromyographic Signals [J].Computer Science,2024,51(3):257-264. [14]LI X,NI R,JI Z.ICG signal denoising based on ICEEMDAN and PSO-VMD methods [J].Physical and Engineering Sciences in Medicine,2024,47:1547-1556. [15]WENLI Z,TINGSONG Z,JIANYI Z,et al.LST-EMG-Net:Long short-term transformer feature fusion network for sEMG gesture recognition [J].Frontiers in Neurorobotics,2023,17:1127338. [16]VASANTHI S M,LENIN A H,FOUAD Y,et al.Electromyography signal based hand gesture classification system using Hilbert Huang transform and deep neural networks [J].He-liyon,2024,10(11):e32211. |
|
||