计算机科学 ›› 2025, Vol. 52 ›› Issue (11A): 241200131-8.doi: 10.11896/jsjkx.241200131
陈俊杰, 赵红, 罗勇, 丁晓云
CHEN Junjie, ZHAO Hong, LUO Yong, DING Xiaoyun
摘要: 为减少目标检测算法在城市环境下的误检和漏检问题,以YOLOv8目标检测算法模型为基础,引入小目标检测层,使得网络能够更好地捕捉和识别视野内的小尺寸物体,进而提高对检测目标的关注度;融合新型遥感目标检测模型来重构C2f模块,以增强其对丰富梯度流信息的感知能力,并增加其动态调节感受野的能力;通过采用拓扑优化思想来优化CBAM注意力机制,提出了GSAM注意力机制,并将其嵌入到网络的适当位置,以提高对语义信息的利用;改善漏检情况,通过对比多种IOU的性能,选择效果最优的EIOU,来加速算法的收敛速度,提高回归精度。在Cityscapes公开数据集上进行了测试和消融实验,实验结果表明改进后的算法相较于基准算法,在精确率、召回率、平均精度值方面分别提升了2.5个百分点、5.8个百分点、6.1个百分点,可以有效地提升城市交通视域下车辆的目标检测精度,为道路视频监控等提供保证。
中图分类号:
| [1]WU J,ZHAO Y Q,QlU X Y.Vehicle Steering Angle ldentification based on GRNN[J].Journal of Basic Science and Engineering,2014,22(1):170-178. [2]GAO T,LIU Z G,QIU X Y.Traffic Vehicle Contour Tracking and lts Engineering Application[J].Journal of Basic Science and Engineering,2010,18(2):343-351. [3]LIU W,ANGUELOV D,ERHAN D,et al.Ssd:Single shotmultibox detector[C]//Computer Vision-ECCV 2016:14th European Conference,Amsterdam,The Netherlands,Part I 14.Springer International Publishing,2016:21-37. [4]REDMON J,DIVVALA S,GIRSHICK R,et al.You only look once:Unified,real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:779-788. [5]LIN T Y,GOYAL P,GIRSHICK R,et al.Focal loss for dense object detection[C]//Proceedings of the IEEE International Conference on Computer Vision.2017:2980-2988. [6]GIRSHICK R,DONAHUE J,DARRELL T,et al.Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2014:580-587. [7]REN S,HE K,GIRSHICK R,et al.Faster R-CNN:Towards real-time object detection with region proposal networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2016,39(6):1137-1149. [8]HE K,ZHANG X,REN S,et al.Spatial pyramid pooling in deep convolutional networks for visual recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,37(9):1904-1916. [9]SONG C L,CHAI W Q,ZHANG X S.Road small target detection based on improved YOLO v5 algorithm [J].Systems Engineering and Electronics,2024,46(10):3271-3278. [10]MU L,ZHAO H,LI Y,et al.Traffic Flow Statistics MethodBased on Deep Learning and Multi-Feature Fusion[J].CMES-Computer Modeling in Engineering & Sciences,2021,129(2):465-483. [11]CHEN Z Y,WANG X L,HE D,et al.Lightweight Vehicle Detection NetworkBased on Improved YOLOv8 [J].Computer Engineering,2025,51(5):314-325. [12]ZHENG Q M,WANG LL,WANG F H.Small Object Detection in Traffic Scene Based on Improved Convolutional Neural Network[J].Computer Engineering,2020,46(6):26-33. [13]LI G J,HU J,AI J Y.Vehicle Detection Based on Improved SSD Algorithm[J].Computer Engineering,2022,48(1):266-274. [14]CAI Y,LUAN T,GAO H,et al.YOLOv4-5D:An effective and efficient object detector for autonomous driving[J].IEEE Transactions on Instrumentation and Measurement,2021,70:1-13. [15]SONG H J,ZHOU L.Vehicle detection and recognition algo-rithm based on function improvement of YOLOv3[J].Chinese Journal of Intelligent Science and Technology,2023,5(4):535-542. [16]PI J,LIU Y H,LI J H.Research on lightweight forest fire detection algorithm based on YOLOv5s[J].Journal of Graphics,2023,44(1):26-32. [17]LI G,ZHAO W,LIU P,et al.Smooth-IoU Loss for BoundingBox Regression in Visual Tracking[J].Acta Automatica Sinica,2023,49(2):288-306. [18]GUO Y Y,HU W C,DAI S,et al.Lightweight Vehicle Detection Model for Roadside Traffic Monitoring Scenarios[J].Computer Engineering and Applications,2022,58(6):192-199. [19]MIAO Y Z,ZHANG Z W,WANG H S,et al.Detection method of fallen leaves on road based on AC-YOLO[J].Control and Decision,2023,38(7):1878-1886. [20]WEN B J,ZHANG C T.Lightweight mask wearing detection algorithm based on YOLOv3[J].Electronic Measurement Technology,2021(44):105-110. [21]MA N,ZHANG X,ZHENG H T,et al.Shufflenet v2:Practical guidelines for efficient cnn architecture design[C]//15th European Conference on Computer Vision(ECCV).Munich:SPRINGER-VERLAG BERLIN,2018:116-131. [22]LI Y X,HOU Q B,ZHENG Z H,et al.Large selective kernel network for remote sensing object detection[J].arXiv:2303.09030,2023. [23]ZHANG X,ZENG H,GUO S,et al.:Efficient long-range attention network for image super-resolution[J].arXiv:220306697. [24]WOO S,PARK J,LEE J Y,et al.CBAM:convolutional block attention module[C]//ECCV 2018.LNCS,Springer,2018:3-19. [25]WANG Q,WU B,ZHU P,et al.ECA-net:Efficient channel attention for deep convolutional neural networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:11534-11542. [26]RUAND,WANG D,ZHENG Y,et al.Gaussian Context Transformer[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).Nashville,TN,USA.IEEE.2021:15124-15133. [27]HU J,SHEN L,SUN G.Squeeze-and-Excitation Networks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition,Salt Lake City,UT,USA,.IEEE.2018:7132-7141. |
|
||