计算机科学 ›› 2025, Vol. 52 ›› Issue (11A): 241200125-8.doi: 10.11896/jsjkx.241200125

• 计算机图形学&多媒体 • 上一篇    下一篇

频域纹理先验与特征增强的医学图像分割模型

钟延杰, 蹇木伟, 张昊然, 凌钰坤   

  1. 山东财经大学计算机与人工智能学院 济南 250014
  • 出版日期:2025-11-15 发布日期:2025-11-10
  • 通讯作者: 蹇木伟(jianmuweihk@163.com)
  • 作者简介:222115038@mail.sdufe.edu.cn
  • 基金资助:
    山东省泰山学者特聘专家计划(tstp20250536)

Medical Image Segmentation Model Based on Frequency Texture Prior and Frequency Feature Enhancement Fusion

ZHONG Yanjie, JIAN Muwei, ZHANG Haoran, LING Yukun   

  1. School of Computer Science and Technology,Shandong University of Finance and Economics,Jinan 250014,China
  • Online:2025-11-15 Published:2025-11-10
  • Supported by:
    Taishan Scholars Distinguished Expert Program of Shandong Province(tstp20250536).

摘要: 提出的模型利用傅里叶变换提取的频域信息作为优化依据,增强网络在高相似性背景下伪装性病灶区域的识别能力。通过设计频域特征增强模块(Frequency Feature Enhancement Module,FFEM),网络能够显著增强病灶区域不同频率的特征信息,实现在复杂背景下更精准地捕捉伪装区域的细微特征。此外,创新性地将频域特征先验图加权融合到损失函数中,以在优化过程中引导网络关注病灶区域特征,提升网络在训练阶段的敏锐度和适应性。同时,设计了交叉注意力融合模块(Cross Attention Fusion Module,CAFM),针对不同频率特征进行差异化增强,进一步提升了网络对各频率特征的调节能力。提出的方法在多个医学影像数据集上(皮肤数据集:ISIC2016,ISIC2017,ISIC2018;结肠息肉数据集:CVC-Clinic,Kvasir,CVC-ColonDB,ETIS LaribPolyDB;乳腺数据集:BUSI)展现出卓越的分割性能;在定量指标,如Dice系数、交并比(IoU)和准确率(ACC)等指标方面,均优于现有模型,具有更好的准确性和鲁棒性。

关键词: 医学图像分割, 频域先验, 特征增强, 伪装区域分割, 注意力机制

Abstract: The proposed model leverages frequency-domain information extracted via Fourier transform as an optimization basis,enhancing the network’s ability to identify camouflaged lesion regions under highly similar backgrounds.By designing the Frequency Feature Enhancement Module (FFEM),the network can significantly strengthen lesion-related features across different frequencies,thereby enabling more precise capture of subtle camouflaged patterns in complex contexts.In addition,a novel strategy integrates frequency-domain prior maps into the loss function through weighted fusion,guiding the optimization process to focus on lesion features and improving the network’s sensitivity and adaptability during training.Furthermore,a Cross-Attention Fusion Module(CAFM) is designed to perform differentiated enhancement of multi-frequency features,further enhancing the network’s ability to regulate and balance frequency-specific information.The proposed method demonstrates outstanding segmentation performance across multiple medical imaging datasets(skin datasets ISIC 2016,ISIC 2017,ISIC 2018;colon polyp datasets CVC-Clinic,Kvasir,CVC-ColonDB,ETIS-LaribPolyDB;breast dataset BUSI).In quantitative evaluations,including Dice coefficient,Intersection over Union(IoU),and Accuracy(ACC),the method outperforms existing models,achieving superior accuracy and robustness.

Key words: Medical image segmentation, Frequency prior, Feature enhancement, Camouflaged lesion segmentation, Attention

中图分类号: 

  • TP183
[1]LECUN Y,BENGIO Y,HINTON G.Deep learning[J].Nature,2015,521(7553):436-444.
[2]LIU J,CAPURRO D,NGUYEN A,et al.Attention-based mul-timodal fusion with contrast for robust clinical prediction in the face of missing modalities[J].Journal of Biomedical Informatics,2023,145:104466.
[3]KHANIABADI F M,SAKIM H A M,TEOHS S.Comparative review on traditional and deep learning methods for medical image segmentation[C]//IEEE 14th Control and System Graduate Research Colloquium(ICSGRC 2023).IEEE,2023:45-50.
[4]JIAN M,CHEN H,TAO C,et al.Triple-DRNet:A triple-cas-cade convolution neural network for diabetic retinopathy grading using fundus images[J].Computers in Biology and Medicine,2023,155:106631.
[5]JIAN M,YU X,ZHANG H,et al.SwinCT:feature enhancement based low-dose CT images denoising with swin transformer[J].Multimedia Systems,2024,30(1):1.
[6]JIAN M,WU R,FU L,et al.Dual-branch-UNnet:A dual-branch convolutional neural network for medical image segmentation[J].Computer Modeling in Engineering & Sciences,2023,137(1):705-716.
[7]RONNEBERGER O,FISCHER P,BROX T.U-net:Convolu-tional networks for biomedical image segmentation.Medical image computing and computer-assisted intervention[C]//18th International Conference,Munich,Germany(MICCAI 2015).Springer,2015:234-241.
[8]DOSOVITSKIY A.An Image is Worth 16×16 Words:Trans-formers for Image Recognition at Scale[C]//Proceedings of International Conference on Learning Representations(ICLR).2020.
[9]VALANARASU J M J,PATEL V M.Unext:Mlp-based rapid medical image segmentation network[C]//International Confe-rence on Medical Image Computing and Computer-assisted Intervention.Cham:Springer,2022:23-33.
[10]FAN D P,JI G P,SUN G,et al.Camouflaged object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:2777-2787.
[11]LYU Y,ZHANG J,DAI Y,et al.Simultaneously localize,segment and rank the camouflaged objects[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2021:11591-11601.
[12]DONG B,WANG W,FAN D P,et al.Polyp-PVT:Polyp Segmentation with Pyramid Vision Transformers[J].CAAI Artificial Intelligence Research,2023,2:9150015.
[13]OKTAY O.Attention U-Net:Learning where to look for thepancreas[J].arXiv:1804.03999,2018.
[14]ZHONG Y,LI B,TANG L,et al.Detecting camouflaged object in frequency domain[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2022:4504-4513.
[15]LI A,ZHANG L,LIU Y,et al.Feature modulation transformer:Cross-refinement of global representation via high-frequency prior for image super-resolution[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2023:12514-12524.
[16]PATRO B N,NAMBOODIRI V,AGNEESWARAN V S.SpectFormer:Frequency and Attention is what you need in a Vision Transformer[J].arXiv:2304.06446,2023.
[17]ZHENG D,ZHENG X,YANGL T,et al.Mffn:Multi-view feature fusion network for camouflaged object detection[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision.2023:6232-6242.
[18]WANG W,XIE E,LI X,et al.PVT V2:Improved Baselineswith Pyramid Vision Transformer[J].Computational Visual Media,2022,8(3):415-424.
[19]WEI J,WANG S,HUANG Q.F3Net:fusion,feedback and focus for salient object detection[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2020:12321-12328.
[20]GUTMAN D,CODELLA N C,CELEBI E,et al.Skin lesion analysistoward melanoma detection:A challenge at the international symposium on biomedical imaging(ISBI) 2016,hosted by the international skin imaging collaboration(ISIC)[J].arXiv:1605.01397,2016.
[21]CODELLA N C,GUTMAN D,CELEBI M E,et al.Skin lesion analysis toward melanoma detection:A challenge at the 2017 international symposium on biomedical imaging(isbi),hosted by the international skin imaging collaboration(isic)[C]//2018 IEEE 15th International Symposium on Biomedical Imaging(ISBI 2018).IEEE,2018:168-172.
[22]CODELLA N,ROTEMBERG V,TSCHANDL P,et al.Skin lesion analysis toward melanoma detection 2018:A challenge hosted by the international skin imaging collaboration(isic)[J].arXiv:1902.03368,2019.
[23]BERNAL J,SÁNCHEZ F J,FERNÁNDEZ-ESPARRACH G,et al.WM-DOVA maps for accurate polyp highlighting in colonoscopy:Validation vs.saliency maps from physicians[J].Computerized Medical Imaging and Graphics,2015,43:99-111.
[24]JHA D,SMEDSRUD P H,RIEGLER M A,et al.Kvasir-seg:A segmented polyp dataset[C]//26th International Conference MultiMedia Modeling(MMM 2020).2020:451-462.
[25]TAJBAKHSH N,GURUDU S R,LIANG J.Automated polypdetection in colonoscopy videos using shape and context information[J].IEEE Transactions on Medical Imaging,2015,35(2):630-644.
[26]SILVA J,HISTACE A,ROMAIN O,et al.Toward embedded detection of polyps in wce images for early diagnosis of colorectal cancer[J].International Journal of Computer Assisted Radiology and Surgery,2014,9:283-293.
[27]HE K,ZHANG X,REN S,et al.Deep residual learning forimage recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:770-778.
[28]JHA D,SMEDSRUD P H,RIEGLERM A,et al.Resunet++:An advanced architecture for medical image segmentation[C]//2019 IEEE international Symposium on Multimedia(ISM).2019:225-2255.
[29]VALANARASU J M J,PATEL V M.Unext:Mlp-based rapid medical image segmentation network[C]//International Confe-rence on Medical Image Computing and Computer-assisted Intervention.2022:23-33.
[30]RUAN J,XIE M,GAO J,et al.Ege-unet:an efficient group enhanced unet for skin lesion segmentation[C]//International Conference on Medical Image Computing and Computer-assisted Intervention.2023:481-490.
[31]RAHMAN M M,MARCULESCU R.Medical image segmentation via cascaded attention decoding[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision.2023:6222-6231.
[32]XU Q,MA Z,NA H E,et al.DCSAU-Net:A deeper and more compact split-attention U-Net for medical image segmentation[J].Computers in Biology and Medicine,2023,154:106626.
[33]YU Z,YU L,ZHENG W,et al.EIU-Net:Enhanced feature extraction and improved skip connections in U-Net for skin lesion segmentation[J].Computers in Biology and Medicine,2023,162:107081.
[34]WEI J,HU Y,ZHANG R,et al.Shallow attention network for polyp segmentation[C]//24th International Conference Medical Image Computing and Computer Assisted Intervention(MICCAI 2021).2021:699-708.
[35]ZHANG R,LAI P,WAN X,et al.Lesion-aware dynamic kernelfor polyp segmentation[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention.2022:99-109.
[36]FAN D P,JI G P,ZHOU T,et al.Pranet:Parallel reverse attention network for polyp segmentation[C]//International Confe-rence on Medical Image Computing and Computer-Assisted Intervention.2020:263-273.
[37]ZHAO X,ZHANG L,LU H.Automatic polyp segmentation via multi-scale subtraction network[C]//24th International Confe-rence Medical Image Computing and Computer Assisted Intervention(MICCAI 2021).France,2021:120-130.
[38]DONG B,WANG W,FAND P,et al.Polyp-pvt:Polyp segmentation with pyramid vision transformers[J].arXiv:2108.06932,2021.
[39]ZHOU T,ZHOU Y,LI G,et al.Uncertainty-aware Hierarchical Aggregation Network for Medical Image Segmentation[J].IEEE Transactions on Circuits and Systems for Video Technology,2024,34(8):7440-7453.
[40]ZHOU T,ZHOU Y,HE K,et al.Cross-level feature aggregation network for polyp segmentation[J].Pattern Recognition,2023,140:109555.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!