计算机科学 ›› 2025, Vol. 52 ›› Issue (11A): 241200125-8.doi: 10.11896/jsjkx.241200125
钟延杰, 蹇木伟, 张昊然, 凌钰坤
ZHONG Yanjie, JIAN Muwei, ZHANG Haoran, LING Yukun
摘要: 提出的模型利用傅里叶变换提取的频域信息作为优化依据,增强网络在高相似性背景下伪装性病灶区域的识别能力。通过设计频域特征增强模块(Frequency Feature Enhancement Module,FFEM),网络能够显著增强病灶区域不同频率的特征信息,实现在复杂背景下更精准地捕捉伪装区域的细微特征。此外,创新性地将频域特征先验图加权融合到损失函数中,以在优化过程中引导网络关注病灶区域特征,提升网络在训练阶段的敏锐度和适应性。同时,设计了交叉注意力融合模块(Cross Attention Fusion Module,CAFM),针对不同频率特征进行差异化增强,进一步提升了网络对各频率特征的调节能力。提出的方法在多个医学影像数据集上(皮肤数据集:ISIC2016,ISIC2017,ISIC2018;结肠息肉数据集:CVC-Clinic,Kvasir,CVC-ColonDB,ETIS LaribPolyDB;乳腺数据集:BUSI)展现出卓越的分割性能;在定量指标,如Dice系数、交并比(IoU)和准确率(ACC)等指标方面,均优于现有模型,具有更好的准确性和鲁棒性。
中图分类号:
| [1]LECUN Y,BENGIO Y,HINTON G.Deep learning[J].Nature,2015,521(7553):436-444. [2]LIU J,CAPURRO D,NGUYEN A,et al.Attention-based mul-timodal fusion with contrast for robust clinical prediction in the face of missing modalities[J].Journal of Biomedical Informatics,2023,145:104466. [3]KHANIABADI F M,SAKIM H A M,TEOHS S.Comparative review on traditional and deep learning methods for medical image segmentation[C]//IEEE 14th Control and System Graduate Research Colloquium(ICSGRC 2023).IEEE,2023:45-50. [4]JIAN M,CHEN H,TAO C,et al.Triple-DRNet:A triple-cas-cade convolution neural network for diabetic retinopathy grading using fundus images[J].Computers in Biology and Medicine,2023,155:106631. [5]JIAN M,YU X,ZHANG H,et al.SwinCT:feature enhancement based low-dose CT images denoising with swin transformer[J].Multimedia Systems,2024,30(1):1. [6]JIAN M,WU R,FU L,et al.Dual-branch-UNnet:A dual-branch convolutional neural network for medical image segmentation[J].Computer Modeling in Engineering & Sciences,2023,137(1):705-716. [7]RONNEBERGER O,FISCHER P,BROX T.U-net:Convolu-tional networks for biomedical image segmentation.Medical image computing and computer-assisted intervention[C]//18th International Conference,Munich,Germany(MICCAI 2015).Springer,2015:234-241. [8]DOSOVITSKIY A.An Image is Worth 16×16 Words:Trans-formers for Image Recognition at Scale[C]//Proceedings of International Conference on Learning Representations(ICLR).2020. [9]VALANARASU J M J,PATEL V M.Unext:Mlp-based rapid medical image segmentation network[C]//International Confe-rence on Medical Image Computing and Computer-assisted Intervention.Cham:Springer,2022:23-33. [10]FAN D P,JI G P,SUN G,et al.Camouflaged object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:2777-2787. [11]LYU Y,ZHANG J,DAI Y,et al.Simultaneously localize,segment and rank the camouflaged objects[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2021:11591-11601. [12]DONG B,WANG W,FAN D P,et al.Polyp-PVT:Polyp Segmentation with Pyramid Vision Transformers[J].CAAI Artificial Intelligence Research,2023,2:9150015. [13]OKTAY O.Attention U-Net:Learning where to look for thepancreas[J].arXiv:1804.03999,2018. [14]ZHONG Y,LI B,TANG L,et al.Detecting camouflaged object in frequency domain[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2022:4504-4513. [15]LI A,ZHANG L,LIU Y,et al.Feature modulation transformer:Cross-refinement of global representation via high-frequency prior for image super-resolution[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2023:12514-12524. [16]PATRO B N,NAMBOODIRI V,AGNEESWARAN V S.SpectFormer:Frequency and Attention is what you need in a Vision Transformer[J].arXiv:2304.06446,2023. [17]ZHENG D,ZHENG X,YANGL T,et al.Mffn:Multi-view feature fusion network for camouflaged object detection[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision.2023:6232-6242. [18]WANG W,XIE E,LI X,et al.PVT V2:Improved Baselineswith Pyramid Vision Transformer[J].Computational Visual Media,2022,8(3):415-424. [19]WEI J,WANG S,HUANG Q.F3Net:fusion,feedback and focus for salient object detection[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2020:12321-12328. [20]GUTMAN D,CODELLA N C,CELEBI E,et al.Skin lesion analysistoward melanoma detection:A challenge at the international symposium on biomedical imaging(ISBI) 2016,hosted by the international skin imaging collaboration(ISIC)[J].arXiv:1605.01397,2016. [21]CODELLA N C,GUTMAN D,CELEBI M E,et al.Skin lesion analysis toward melanoma detection:A challenge at the 2017 international symposium on biomedical imaging(isbi),hosted by the international skin imaging collaboration(isic)[C]//2018 IEEE 15th International Symposium on Biomedical Imaging(ISBI 2018).IEEE,2018:168-172. [22]CODELLA N,ROTEMBERG V,TSCHANDL P,et al.Skin lesion analysis toward melanoma detection 2018:A challenge hosted by the international skin imaging collaboration(isic)[J].arXiv:1902.03368,2019. [23]BERNAL J,SÁNCHEZ F J,FERNÁNDEZ-ESPARRACH G,et al.WM-DOVA maps for accurate polyp highlighting in colonoscopy:Validation vs.saliency maps from physicians[J].Computerized Medical Imaging and Graphics,2015,43:99-111. [24]JHA D,SMEDSRUD P H,RIEGLER M A,et al.Kvasir-seg:A segmented polyp dataset[C]//26th International Conference MultiMedia Modeling(MMM 2020).2020:451-462. [25]TAJBAKHSH N,GURUDU S R,LIANG J.Automated polypdetection in colonoscopy videos using shape and context information[J].IEEE Transactions on Medical Imaging,2015,35(2):630-644. [26]SILVA J,HISTACE A,ROMAIN O,et al.Toward embedded detection of polyps in wce images for early diagnosis of colorectal cancer[J].International Journal of Computer Assisted Radiology and Surgery,2014,9:283-293. [27]HE K,ZHANG X,REN S,et al.Deep residual learning forimage recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:770-778. [28]JHA D,SMEDSRUD P H,RIEGLERM A,et al.Resunet++:An advanced architecture for medical image segmentation[C]//2019 IEEE international Symposium on Multimedia(ISM).2019:225-2255. [29]VALANARASU J M J,PATEL V M.Unext:Mlp-based rapid medical image segmentation network[C]//International Confe-rence on Medical Image Computing and Computer-assisted Intervention.2022:23-33. [30]RUAN J,XIE M,GAO J,et al.Ege-unet:an efficient group enhanced unet for skin lesion segmentation[C]//International Conference on Medical Image Computing and Computer-assisted Intervention.2023:481-490. [31]RAHMAN M M,MARCULESCU R.Medical image segmentation via cascaded attention decoding[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision.2023:6222-6231. [32]XU Q,MA Z,NA H E,et al.DCSAU-Net:A deeper and more compact split-attention U-Net for medical image segmentation[J].Computers in Biology and Medicine,2023,154:106626. [33]YU Z,YU L,ZHENG W,et al.EIU-Net:Enhanced feature extraction and improved skip connections in U-Net for skin lesion segmentation[J].Computers in Biology and Medicine,2023,162:107081. [34]WEI J,HU Y,ZHANG R,et al.Shallow attention network for polyp segmentation[C]//24th International Conference Medical Image Computing and Computer Assisted Intervention(MICCAI 2021).2021:699-708. [35]ZHANG R,LAI P,WAN X,et al.Lesion-aware dynamic kernelfor polyp segmentation[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention.2022:99-109. [36]FAN D P,JI G P,ZHOU T,et al.Pranet:Parallel reverse attention network for polyp segmentation[C]//International Confe-rence on Medical Image Computing and Computer-Assisted Intervention.2020:263-273. [37]ZHAO X,ZHANG L,LU H.Automatic polyp segmentation via multi-scale subtraction network[C]//24th International Confe-rence Medical Image Computing and Computer Assisted Intervention(MICCAI 2021).France,2021:120-130. [38]DONG B,WANG W,FAND P,et al.Polyp-pvt:Polyp segmentation with pyramid vision transformers[J].arXiv:2108.06932,2021. [39]ZHOU T,ZHOU Y,LI G,et al.Uncertainty-aware Hierarchical Aggregation Network for Medical Image Segmentation[J].IEEE Transactions on Circuits and Systems for Video Technology,2024,34(8):7440-7453. [40]ZHOU T,ZHOU Y,HE K,et al.Cross-level feature aggregation network for polyp segmentation[J].Pattern Recognition,2023,140:109555. |
|
||